[nex71] Structure function of harmonic oscillator I.

Consider the quantum harmonic oscillator (for $\hbar = 1$),

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega_0^2 q^2 = \omega_0 \left(a^{\dagger}a + \frac{1}{2}\right),$$

where $q = (a^{\dagger} + a)/\sqrt{2m\omega_0}$, $p = i\sqrt{m\omega_0/2}(a^{\dagger} - a)$ relate the position and momentum operators ([q, p] = i) to the boson creation and annihilation operators $([a, a^{\dagger}] = 1)$. Use the recursion method with inner product $\langle A|B \rangle = \frac{1}{2}(\langle AB \rangle + \langle BA \rangle)$ to calculate the structure function $S_{qq}(\omega)$ for the position variable at temperature T, where $\langle a^{\dagger}a \rangle = n_B = (e^{\beta\omega_0} - 1)^{-1}$, $\beta = 1/k_BT$.

Solution: