[nex57] Mean-square displacement of Brownian particle II

Consider a Brownian particle of mass m constrained to move along a straight line. The particle experiences two forces: a drag force $-\gamma v$ and a white-noise random force f(t). In [nex118] and [nex56] we have taken two different routes to calculate the mean-square displacement,

$$\langle x^2(t) \rangle = 2D \left[t - \frac{m}{\gamma} \left(1 - e^{-(\gamma/m)t} \right) \right],\tag{1}$$

from the Langevin equation. The task here is to derive (1) directly from the formal solution (obtained in [nex53]),

$$x(t) = v_0 \frac{m}{\gamma} \left(1 - e^{-(\gamma/m)t} \right) + \frac{1}{\gamma} \int_0^t ds \left(1 - e^{-(\gamma/m)(t-s)} \right) f(s),$$
(2)

of the Langevin equation with a white-noise random force. That random force is uncorrelated, $\langle f(t)f(t')\rangle = I_f \delta(t-t')$ and has intensity $I_f = 2k_B T \gamma$. Use equipartition, $\frac{1}{2}m\langle v^2 \rangle = \frac{1}{2}k_B T$, when taking the thermal average $\langle v_0^2 \rangle$ of initial velocities v_0 .

Solution: