[nex52] Bistable chemical system

Consider the master equation of the birth-death process specified by transition rates of the form $W(m|n) = T_{+}(n)\delta_{m,n+1} + T_{-}(n)\delta_{m,n-1}$ with

$$T_{+}(n) = k_1 A n(n-1) + k_3 A, \quad T_{-}(n) = k_2 n(n-1)(n-2) + k_4 n.$$

This process describes two simultaneous chemical reactions $A + 2X \leftrightarrow 3X, A \leftrightarrow X$ that exhibit bistable states in a certain parameter range. The concentration of A is taken to be constant.

(a) Construct a product expression for $P_s(n)$ from the detailed-balance condition as explained in [nln17]. Use the three parameters $B = k_1 A/k_2$, $R = k_4/k_2$, $Q = k_3/k_1$.

(b) Show that for R/Q = 1 we thus obtain the Poisson distribution.

(c) Plot the solution of the extremum condition $T_+(n-1) = T_-(n)$ as a graph *B* versus *n* over the range $0 \le n \le 100$ for the two cases (i) Q = 100, R = 500 and (ii) Q = 100, R = 1200. Identify the extremum positions n_{extr} for B = 70 in both cases.

(d) Plot $P_s(n)$ versus n over the range $0 \le n \le 100$ for B = 70 and cases (i), (ii) for Q, R.

Solution: