[nex45] Random light switch.

The position of the light switch is described by the stochastic variable X, which can assume the two values x = 0 (lights off) and x = 1 (lights on). Some agent switches the lights on/off randomly at the rate γ . This means that the average interval of continuous brightness/darkness is $\tau = 1/\gamma$. (a) Set up the master equation for $P(x, t|x_0)$ and solve it.

(a) Set up the matter equation for $T(x, |x_0)$ and set $(x, |x_0)$. (b) Find the asymptotic distribution $P_s(x) = \lim_{t\to\infty} P(x, t|x_0)$. (c) Find the conditional average $\langle X(t)|x_0\rangle \doteq \sum_x xP(x, t|x_0)$ and then $\langle X(t)\rangle_s = \lim_{t\to\infty} \langle X(t)|x_0\rangle$. (d) Use the regression theorem $\langle X(t)X(t')\rangle_s \doteq \sum_{xx'} P(x, t|x', t')P_s(x')$ to determine the (stationary) autocorrelation function $\langle \langle X(t)X(t')\rangle_s \doteq \langle X(t)X(t')\rangle_s - \langle X(t)\rangle_s \langle X(t')\rangle_s$.

Solution: