[nex38] Life expectancy of the ever young

The probability distribution of lifetimes in some population is f(t) with an average lifetime

$$T = \int_0^\infty dt \, t \, f(t)$$

for individuals.

(a) Show that the conditional probability distribution for the remaining lifetime of individuals of age τ is

$$P_c(t|\tau) = \frac{f(t)}{C(\tau)}\theta(t-\tau), \quad C(\tau) \doteq \int_{\tau}^{\infty} dt f(t),$$

where $\theta(t)$ is the Heaviside step function.

(b) If we define the *life expectancy* T_{τ} as the average remaining lifetime for an individual of age τ express T_{τ} in terms of $P_c(t|\tau)$.

(c) Find the function f(t) for a population (e.g. free neutrons) whose life expectancy is independent of the age of the individual, i.e. for the case where $T_{\tau} = T$ holds. Then infer an explicit expression for the conditional probability distribution $P_c(t|\tau)$.

Solution: