[nex30] Equations of motion for mean value and variance.

Consider the Fokker-Planck equation for a stochastic process,

$$\frac{\partial}{\partial t} P(x,t|x_0) = -\frac{\partial}{\partial x} \left[A(x)P(x,t|x_0) \right] + \frac{1}{2} \frac{\partial^2}{\partial x^2} \left[B(x)P(x,t|x_0) \right],$$

where x_0 is the initial value of all sample paths, implying $P(x, 0|x_0) = \delta(x - x_0)$. Use the equations of motion,

$$\frac{d}{dt} \langle x \rangle = \langle A(x) \rangle, \quad \frac{d}{dt} \langle x^2 \rangle = \langle B(x) \rangle + 2 \langle xA(x) \rangle,$$

to calculate the time-dependence of the mean value $\langle x \rangle$ and the variance $\langle \langle x^2 \rangle \rangle$ for two processes with initial conditions as dictated by $P(x, 0|x_0) = \delta(x - x_0)$:

(i) Uniform drift and diffusion process: A(x) = v, B(x) = 2D.

(ii) Ornstein-Uhlenbeck process: $A(x) = -\kappa x$, $B(x) = \gamma$.

Solution: