[nex19] Robust probability distributions

Consider two independent stochastic variables X_1 and X_2 , each specified by the same probability distribution $P_X(x)$. Show that if $P_X(x)$ is either a Gaussian, a Lorentzian, or a Poisson distribution,

(i)
$$P_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-x^2/2\sigma^2}$$
, (ii) $P_X(x) = \frac{1}{\pi} \frac{a}{x^2 + a^2}$, (iii) $P_X(x = n) = \frac{a^n}{n!} e^{-a}$.

then the probability distribution $P_Y(y)$ of the stochastic variable $Y = X_1 + X_2$ is also a Gaussian, a Lorentzian, or a Poisson distribution, respectively. What property of the characteristic function $\Phi_X(k)$ guarantees the robustness of $P_X(x)$?

Solution: