
[nex123] Brownian harmonic oscillator III: contour integrals

The generalized Langevin equation for the Brownian harmonic oscillator,
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where α(t) is the attenuation function, mω2
0 the spring constant, and f(t) a correlated-noise ran-

dom force, is known to produce the following expression for the spectral density of the position
coordinate:
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where the relation between the random-force spectral density, Sff (ω), and the Laplace-transformed
attenuation function, α̂(ω), is dictated by the fluctuation-dissipation relation introduced in [nln72].
(a) Calculate Sff (ω) or restate the result used in [nex129] and determine its singularity structure.
(b) Evaluat Sxx(ω) and identify its singularity structure for the cases (i) γ/2m < ω0 (under-
damped), (ii) γ/2m = ω0 (critically damped), and (iii) γ/2m > ω0 (overdamped).
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via contour integration for the cases (i)-(iii) and check the results against those obtained in [nex122].

Solution:


