[nex108] Catalyst driven chemical reaction: total rate of reactions

In the chemical reaction $A + X \leftrightarrow A + Y$, the molecule A is a catalyst at constant concentration. The total number of reacting molecules, $n_x + n_y = N$, is also constant. K_1 is the probability per unit time that a molecule X interacts with a molecule A to turn into a molecule Y, and K_2 is the probability per unit time that a Y interacts with an A to produce an X. The dynamics may be described by a master equation for P(n, t), where $n \equiv n_x, n_y = N - n$. The transition rates are $W(m|n) = K_1 n \delta_{m,n-1} + K_2(N-n) \delta_{m,n+1}$. The total rate of chemical reactions is defined as follows:

$$R(t) \doteq \sum_{nm} W(n|m)P(m,t).$$

(a) Express R(t) in terms of $\langle \langle n(t) \rangle \rangle$.

(b) Use the result of $\langle \langle n(\infty) \rangle \rangle$ from [nex46] to calculate the total rate of chemical reactions in the stationary state. Set $K_1 = \gamma$, $K_2 = 1 - \gamma$ and compare the γ -dependence of $R(\infty)$ with that of $\langle \langle n^2(\infty) \rangle \rangle$ from [nex46], which is a measure of the fluctuations in the population of molecules. (c) Use the result of $\langle \langle n(t) \rangle \rangle$ from [nex107] to calculate the time evolution of R(t). Plot R(t) for $n_0 = 0, K_1 = \gamma, K_2 = 1 - \gamma$ and various fixed values of γ . The time scale is thus set. Compare the graph of R(t) with the graph of $\langle \langle n^2(t) \rangle \rangle$ from [nex107]. Explain the similarities and differences.

Solution: