[nex107] Catalyst driven chemical reaction: dynamics

In the chemical reaction $A + X \leftrightarrow A + Y$, the molecule A is a catalyst at constant concentration. The total number of reacting molecules, $n_x + n_y = N$, is also constant. K_1 is the probability per unit time that a molecule X interacts with a molecule A to turn into a molecule Y, and K_2 is the probability per unit time that a Y interacts with an A to produce an X. The dynamics may be described by a master equation for P(n,t), where $n \equiv n_x, n_y = N - n$. The transition rates are

$$W(m|n) = K_1 n \delta_{m,n-1} + K_2(N-n) \delta_{m,n+1}.$$

- (a) Solve the equations of motion for $\langle \langle n(t) \rangle \rangle$, $\langle \langle n^2(t) \rangle \rangle$ as constructed in [nex46]. Use initial values $\langle \langle n(0) \rangle \rangle = n_0$, $\langle \langle n^2(0) \rangle \rangle = 0$.
- (b) Plot $\langle \langle n(t) \rangle \rangle$, $\langle \langle n^2(t) \rangle \rangle$ in separate frames for $n_0 = 0$, $K_1 = \gamma$, $K_2 = 1 \gamma$, and various γ . This fixes the time scale. Identify any interesting features in the curves and try to explain them.

Solution: