Magnetic Resonance or Scattering [nln97]

Magnetic probe: $\mathcal{H}_{1}(t) = -\mathbf{M} \cdot \mathbf{h}(t)$. We set $\hbar = 1$ throughout. Linear response: $\langle M_{\mu}(\mathbf{r},t) \rangle - \langle M_{\mu} \rangle_{eq} = \sum_{\nu} \int d^{3}r' \int dt \, \tilde{\chi}_{\mu\nu}(\mathbf{r} - \mathbf{r}', t - t') h_{\nu}(\mathbf{r}', t')$. Response function: $\tilde{\chi}_{\mu\nu}(\mathbf{r},t) = \imath \theta(t) \langle [M_{\mu}(\mathbf{r},t), M_{\nu}(\mathbf{0},0)] \rangle = \imath \theta(t) [S^{\mu}_{\mathbf{l}+\mathbf{r}}(t), S^{\nu}_{\mathbf{1}}] \rangle$. Generalized susceptibility: $\chi_{\mu\nu}(\mathbf{q},\omega) = \sum_{\mathbf{r}} e^{\imath \mathbf{q} \cdot \mathbf{r}} \int_{-\infty}^{+\infty} dt \, e^{\imath \omega t} \tilde{\chi}_{\mu\nu}(\mathbf{r},t)$. Correlation function: $\tilde{S}_{\mu\nu}(\mathbf{r},t) = \langle S^{\mu}_{\mathbf{l}+\mathbf{r}}(t) S^{\nu}_{\mathbf{1}} \rangle$. Dynamic structure factor: $S_{\mu\nu}(\mathbf{q},\omega) = \sum_{\mathbf{r}} e^{\imath \mathbf{q} \cdot \mathbf{r}} \int_{-\infty}^{+\infty} dt \, e^{\imath \omega t} \tilde{S}_{\mu\nu}(\mathbf{r},t)$. Relation from [nln39]: $S_{\mu\nu}(\mathbf{q},\omega) = \frac{2\chi''_{\mu\nu}(\mathbf{q},\omega)}{1 - e^{-\beta\omega}}$.

Experimental techniques:

- Ferromagnetic resonance, EPR.
 - Long wavelengths (long compared to lattice spacing) probed.
 - Relevant quantitity: $\chi''_{\mu\nu}(\mathbf{q}\simeq 0,\omega).$
- Inelastic neutron scattering.
 - Interaction with magnetic dipole moment of neutron.
 - Momentum transfer \mathbf{q} and energy transfer ω of neutrons well matched with energy-momentum relations $\epsilon(\mathbf{q})$ of typical collective magnetic excitations.

- Scattering cross section:
$$\frac{d^2\sigma}{d\omega d\Omega} \propto S_{\mu\nu}(\mathbf{q},\omega).$$

- Nuclear magnetic resonance, NMR.
 - Localized probe (nuclear magnetic moment) interacts with electronic magnetism in immediate vicinity.

- Spin-lattice relaxation rate:
$$\frac{1}{T_1} \propto \sum_{\mathbf{q}} S_{\mu\nu}(\mathbf{q}, \omega_{\mathrm{N}}).$$

– Nuclear Larmor frequency ω_N is very small compared to typical electronic magnetic excitations.