Moment Expansion vs Continued Fraction II ..

Moment expansion of correlation function (see [nln78]):
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Asymptotic expansion and continued-fraction representation:
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Transformation relations between {M,} and {a,,b?} extracted from inspec-
tion of the two representation in (2).

e Conversion {a,,b2} < {Ax} in two steps.
e First step: {a,, b2} < {M,} here.
e Second step: {Mar} <> {Ax} in [nln85].

Calculating {a,,, b2} first is most practical in many applications. Key features
of dynamical quantities (bandwidth, gap, singularity structure) are most
effectively extracted from {Ay}.

Forward direction: {M,} — {a,,0?}
Initialize auxiliary quantities:
MO = (-1 My, LY = (1) Mypy, k=0,....2K.  (3)

Evaluate sequentially for £ = n, ..., 2K —n+1 (in two successive inner loops)
and n =1,...,2K (outer loop):
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Identify continued-fraction coefficients among auxiliary quantities:
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Reverse direction: {a,,02} — {M,}
Initialize auxiliary quantities, setting b3 = b*; = 1:
M®=p: L™ =_q, n=0,...K; (6a)

MIY =0, k=0,... 2K +1. (6b)

Evaluate sequentially for n = 0,...,min(K,2K — j) (inner loop) and j =
0,...,2K + 1 (outer loop):
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Identify moments among auxiliary quantities:
M, = (-1)"M", n=0,...,2K +1. (8)

Results of a few iterations in the forward sequence (left) and in the reverse
sequence (right):
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