
Scattering from Free Atoms [nln93]

Consider a dilute gas of atoms with mass M . Interaction between gas atoms
limited to (rare) collisions.

Hamiltonian: H =
p2

2M
(dominated by kinetic energy).

Contact interaction between gas atom at position R(t) and scattering radia-
tion (see [nln89]) defines dynamical variable relevant for scattering process:
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Equation of motion (setting ~ ≡ 1):1

ı
∂A

∂t
= [A,H] =

1

2M

[
eıq·R, p2

]
= −A 1

2M

(
2q · p + q2

)
. (2)

Formal solution:
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Third line: Gaussian integral is unaffected by a constant shift in p.

Note symmetry property from [nln39]: S̃AA(q,−t) = S̃AA(q, t− ıβ).

1Use [R,p] = ı, [A,p] = −qA, [A, p2] = [A,p] · p + p · [A,p] = −Aq · p − p · qA,
Aq · p− p · qA = −Aq2, ⇒ [A, p2] = −A(2q · p+ q2).



Dynamic structure factor via Fourier transform:
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• Scattering is isotropic, only dependent on magnitude of q.

• Maximum intensity occurs when energy transfer ω and momentum
transfer q reflect energy momentum relation, ω = q2/2M , of free, non-
relativistic gas particle.

• Lineshape broadens with increasing temperature and/or decreasing mass
of gas atoms.

• Note detailed-balance condition from [nln39]:

SAA(q,−ω) = e−βωSAA(q, ω).

• In the limit M → ∞ at fixed temperature, the atoms slow down and
come to rest. The scattering becomes elastic in nature, still isotropic
and with zero energy transfer:

SAA(q, ω)
M→∞−→ 2πδ(ω).

2


