Central Limit Theorem ..

The central limit theorem is a major extension of the law of large numbers.
It explains the unique role of the Gaussian distribution in statistical physics.

Given are a large number of statistically independent random variables X;, i =
1,..., N with equal probability distributions Py (x;). The only restriction on
the shape of Px(z;) is that the moments (X") = (X™) are finite for all n.

Goal: Find the probability distribution Py (y) for the random variable Y =
(X1 —(X)+---+ Xy —(X))/N.
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Characteristic function:
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where we have performed a cumulant expansion to leading order.
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with variance ((Y?)) = ((X?))/N

Note that regardless of the form of Py (x), the average of a large number of
(independent) measurements of X will be a Gaussian with standard deviation

O'YZO')(/\/N.



