Representations of Recursion Method [nln81]

Object of interest: time-dependent correlation function $\langle A(t)A \rangle$.

Recursive part of method: orthogonal expansion of carrier of time evolution.

Heisenberg picture:

- time evolution prescribed by Heisenberg (or Hamilton) equation,
- time evolution carried by dynamical variable,
- Liouvillian operator generates new directions.

Schrödinger picture:

- time evolution prescribed by Schrödinger equation,
- time evolution carried by wave function,
- Hamiltonian operator generates new directions.

Liouvillian representation	Hamiltonian representation
$\frac{d}{dt}A(t) = iL_{\rm qu}A(t) = \frac{i}{\hbar}[\mathcal{H}, A(t)]$	$i\hbar \frac{d}{dt} \psi(t)\rangle = \mathcal{H} \psi(t)\rangle$
$\frac{a}{dt}A(t) = iL_{\rm cl}A(t) = -\{\mathcal{H}, A(t)\}$	
$A(t) = e^{iLt}A(0) = \sum_{k=0}^{\infty} C_k(t) f_k\rangle$	$ \psi(t)\rangle = e^{-i\mathcal{H}t/\hbar} \psi(0)\rangle = \sum_{k=0}^{\infty} D_k(t) f_k\rangle$
$ f_0\rangle = A(0), f_{k+1}\rangle = \imath L f_k\rangle - \dots$	$ f_0\rangle = \psi(0)\rangle = A \phi_0\rangle, f_{k+1}\rangle = \mathcal{H} f_k\rangle - \dots$
$\tilde{\Phi}(t) = \langle [A(t), A(0)]_+ \rangle - \langle A \rangle^2$	$\tilde{S}(t) = \langle A(t)A(0) \rangle - \langle A \rangle^2$
$\operatorname{Tr}\left[e^{-\beta\mathcal{H}}\underbrace{e^{i\mathcal{H}t/\hbar}Ae^{-i\mathcal{H}t/\hbar}}_{A(t)}A\right]$	$e^{iE_0t/\hbar} \langle \phi_0 A \underbrace{e^{-i\mathcal{H}t/\hbar}A \phi_0 \rangle}_{ \psi(t)\rangle}$