Generalized Langevin Equation .

The Langevin equation,

dv

m =+ ful), (1)

was designed to describe Brownian motion [nln71]. The two forces on the
rhs represent an instantaneous attenuation, specified by a damping constant
v and a white-noise random force f(t).

The generalized Langevin equation,
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is constructed to describe fluctuations of any mode in a many-body system. A

consistent generalization requires synchronized modifications of both forces:

e The instantaneous attenuation is replaced by attenuation with memory
(retarded attenuation) represented by some attenuation function a(t).

e The white-noise random force is replaced by a random force f.(t) rep-
resenting correlated noise.

Fluctuation-dissipation relation:

e Instantaneous attenuation:

(fw() fuw(t))) = 2k Tyo(t = 1), (3)

e Retarded attenuation:
(fe@) fo(t)) = kpTas(t — 1) (4)
where ag(t) = a(t)0(t) + a(—t)0(—t) is the symmetrized attenuation

function.

A justification of relations (3) and (4) is based on the fluctuation-dissipation
theorem derived from microscopic dynamics [nln39]. The special case (3) of
instantaneous attenuation is a consequence of Einstein’s relation [nln67].

The width of the (symmetrized) attenuation function ag(t) is a measure for
the memory that governs the time evolution of the stochastic variable. In
the limit of short memory (instantaneous attenuation) we have

as(t —t') = 2yt —t').



Fourier analysis:
Definitions:

t(w) = / +Oodtei‘”tv(t), fe(w) = /_ +OodtethfC(t), fw) = /O h dt e™ta(t).
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Substitution of definitions in (2) yields (with t" = —t/,7 =t 4+ t")
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Relation between Fourier amplitudes:

Spectral densities:
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va(w)i/_ dr e“(v(t)v(t + 7)), Sff(w)i/_ dr e“T{f.(t) f.(t +7)).
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Correlations of Fourier amplitudes [nex119]:

(0(w)T" (W) = 21 Sy (W)d(w — '), (fe(w)f(W)) = 2mSps(w)d(w — ).



Relation between spectral densities:

Str(w)
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Fluctuation-dissipation relation (4) in frequency domain:

as(w)=a(w)+a* (w)
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Note: If Syr(w) > 0 then a(t) has a global maximum at ¢ = 0.

Solution of generalized Langevin equation (2) expressed by the spectral den-
sity of the stochastic variable assembled from (5) and (6):
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Limit of instantaneous attenuation: &(w) —
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Velocity autocorrelation function:
Stationary state. Use &(—w) = &*(w).
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(a) analytic for Im{w} > 0, Im{0)}
(b) analytic for Im{w} < 0.
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Limit of instantaneous attenuation: &(w) — v [nex120]
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