Langevin's Theory [nln71]

Langevin's theory of Brownian motion operates on a less contracted level of description than Einstein's theory [nln65]. The operational time scale is small compared to the relaxation time: $dt \ll \Delta \tau_{\rm R}$. [nln64]. On this time scale inertia matters, implying that velocity cannot change abruptly. Velocity and position variables are kinematically coupled.

The Langevin equation,

$$m\ddot{x} = -\gamma\dot{x} + f(t),\tag{1}$$

is constructed from Newton's second law with two forces acting:

- drag force: $-\gamma \dot{x}$ (parametrized by mobility γ^{-1}),
- random force: f(t) (Gaussian white noise/Wiener process).

Since we do not know f(t) explicitly we cannot solve (1) for x(t). However, we know enough about f(t) to solve (1) for $\langle x^2 \rangle$ as a function of time [nex118].

First step: derive the linear, 2nd-order ODE for $\langle x^2 \rangle$,

$$m\frac{d^2}{dt^2}\langle x^2\rangle + \gamma\frac{d}{dt}\langle x^2\rangle = 2k_BT,$$
(2)

using

- the white-noise implication that the random force and the position are uncorrelated, $\langle xf(t)\rangle$,
- the equilibrium implication that the average kinetic energy of the Brownian particle satisfies equipartition, $\langle \dot{x}^2 \rangle = k_{\rm B}T/m$.

Second step: Integrate (2) twice using

- initial conditions $\langle x^2 \rangle_0 = 0$ and $d \langle x^2 \rangle_0 / dt = 0$,
- Einstein's fluctuation-dissipation relation $D = k_{\rm B}T/\gamma$,
- the fact that (2) is a 1st-order ODE for $d\langle x^2 \rangle/dt$.

The result reads

$$\langle x^2 \rangle = 2D \left[t - \frac{m}{\gamma} \left(1 - e^{-\gamma t/m} \right) \right].$$
 (3)

Within the framework of Langevin's theory, the relaxation time previously identified [nln64] is

$$\Delta \tau_{\rm R} = \frac{m}{\gamma}.$$

This relaxation time separates short-time *ballistic* regime from a long-time *diffusive* regime:

•
$$t \ll \frac{m}{\gamma}$$
: $\langle x^2 \rangle \sim \frac{D\gamma}{m} t^2 = \frac{k_B T}{m} t^2 = \langle v^2 \rangle t^2$,
• $t \gg \frac{m}{\gamma}$: $\langle x^2 \rangle \sim 2Dt$.

Applications and variations:

- ▷ Mean-square displacement of Brownian particle [nex56] [nex57] [nex118]
- \triangleright Formal solution of Langevin equation [nex53]
- ▷ Velocity correlation function of Brownian particle [nex55] [nex119] [nex120]