Langevin’s Theory .

Langevin’s theory of Brownian motion operates on a less contracted level
of description than Einstein’s theory [nln65]. The operational time scale is
small compared to the relaxation time: dt < A7rg. [nln64]. On this time
scale inertia matters, implying that velocity cannot change abruptly. Velocity
and position variables are kinematically coupled.

The Langevin equation,

is constructed from Newton’s second law with two forces acting:

e drag force: —yi (parametrized by mobility v~1),
e random force: f(t) (Gaussian white noise/Wiener process).

Since we do not know f(t) explicitly we cannot solve (1) for x(t). However,
we know enough about f(#) to solve (1) for (z?) as a function of time [nex118].

First step: derive the linear, 2nd-order ODE for (z?),
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using

e the white-noise implication that the random force and the position are
uncorrelated, (xf(t)),

e the equilibrium implication that the average kinetic energy of the Brow-
nian particle satisfies equipartition, (#?) = kgT/m.

Second step: Integrate (2) twice using

e initial conditions (22)g = 0 and d(z?)q/dt = 0,
e Einstein’s fluctuation-dissipation relation D = kgT'/7,
e the fact that (2) is a 1st-order ODE for d(z?)/dt.

The result reads
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Within the framework of Langevin’s theory, the relaxation time previously
identified [nln64] is
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This relaxation time separates short-time ballistic regime from a long-time
diffusive regime:
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Applications and variations:

> Mean-square displacement of Brownian particle [nex56] [nex57] [nex118]

>> Formal solution of Langevin equation [nex53]

> Velocity correlation function of Brownian particle [nex55] [nex119] [nex120]



