
Langevin’s Theory [nln71]

Langevin’s theory of Brownian motion operates on a less contracted level
of description than Einstein’s theory [nln65]. The operational time scale is
small compared to the relaxation time: dt � ∆τR. [nln64]. On this time
scale inertia matters, implying that velocity cannot change abruptly. Velocity
and position variables are kinematically coupled.

The Langevin equation,
mẍ = −γẋ+ f(t), (1)

is constructed from Newton’s second law with two forces acting:

• drag force: −γẋ (parametrized by mobility γ−1),

• random force: f(t) (Gaussian white noise/Wiener process).

Since we do not know f(t) explicitly we cannot solve (1) for x(t). However,
we know enough about f(t) to solve (1) for 〈x2〉 as a function of time [nex118].

First step: derive the linear, 2nd-order ODE for 〈x2〉,
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〈x2〉 = 2kBT, (2)

using

• the white-noise implication that the random force and the position are
uncorrelated, 〈xf(t)〉,
• the equilibrium implication that the average kinetic energy of the Brow-

nian particle satisfies equipartition, 〈ẋ2〉 = kBT/m.

Second step: Integrate (2) twice using

• initial conditions 〈x2〉0 = 0 and d〈x2〉0/dt = 0,

• Einstein’s fluctuation-dissipation relation D = kBT/γ,

• the fact that (2) is a 1st-order ODE for d〈x2〉/dt.

The result reads
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Within the framework of Langevin’s theory, the relaxation time previously
identified [nln64] is

∆τR =
m

γ
.

This relaxation time separates short-time ballistic regime from a long-time
diffusive regime:

• t� m
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: 〈x2〉 ∼ Dγ
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t2 = 〈v2〉t2,

• t� m

γ
: 〈x2〉 ∼ 2Dt.

Applications and variations:

B Mean-square displacement of Brownian particle [nex56] [nex57] [nex118]

B Formal solution of Langevin equation [nex53]

B Velocity correlation function of Brownian particle [nex55] [nex119] [nex120]
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