
Ornstein-Uhlenbeck Process [nln62]

The Fokker-Planck equation of the Ornstein-Uhlenbeck process,
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features the standard (constant) diffusion term, B(x, t) = γ > 0 and a
position-dependent drift term, A(x, t) = −κx with κ > 0. This sort of
drift is directed toward a particular position, namely x = 0. In a sense the
drift counteracts the diffusion here. The diffusion term alone would broaden
and flatten the probability distribution. A normal drift term, as in [nex101],
has no effect on the broadening.

If a stationary solution PS(x) of (1) exists it must satisfy the equation
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Normalizability requires that PS(±∞) = 0 and P ′S(±∞) = 0.
Consequence: the content of the square baracket in (2) must vanish. Sepa-
ration of variables and integration then yields a Gaussian centered at x = 0,
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The ratio κ/γ in the prefactor and in the exponent represents the competition
between diffusion and (restoring) drift.

For the dynamic solution of (1) we take two different approaches:

• [nex31] We derive from the second-order PDE (1) for the probability
distribution P (x, t) with initial condition P (x, 0) = δ(x − x0) a first-
order PDE for the characteristic function and then solve that PDE.
The result is a Gaussian whose mean and variance relax toward the
values of the stationary solution (3). The relaxation rate is governed
by the drift coefficient κ alone.

• [nex41] We search for solutions that permit a product ansatz P (x, t)
.
=

U(t)V (x) and aim to express the general solution as sum of such so-
lutions. This is a reasonable goal for a linear PDE such as (1). The
result expresses U(t) as an exponential function and V (x) as a Hermite
polynomial multiplied by a Gaussian.


