
Markov Chains [nln61]

Transitions between values of a discrete stochastic variable taking place at
discrete times:

X = {x1, . . . , xN}; t = sτ, s = 0, 1, 2, . . .

Notation adapted to accommodate linear algebra:

P (xn, t)→ P (n, s), P (xn, t0 + sτ |xm, t0)→ P (n|m; s).

Time evolution of initial probability distribution:

P (n, s) =
∑
m

P (n|m; s)P (m, 0).

Nested Chapman-Kolmogorov equations:

P (n|m; s) =
∑
i

P (n|i; 1)P (i|m; s− 1)

=
∑
ij

P (n|i; 1)P (i|j; 1)P (j|m; s− 2)

=
∑
ijk

P (n|i; 1)P (i|j; 1)P (j|k; 1)P (k|m; s− 3) = . . .

Matrix representation:

Transition matrix: W with elements Wmn = P (n|m; 1).

Probability vector: ~P (s) =
(
P (1, s), . . . , P (N, s)

)
.

Time evolution via matrix multiplication: ~P (s) = ~P (0) ·Ws.

General attributes of transition matrix:

• All elements represent probabilities: Wmn ≥ 0;
Wmm: system stays in state m;
Wmn with m 6= n: system undergoes a transition from m to n.

• Normalization of probabilities:
∑
n

Wmn = 1

• A transition m→ n and its inverse n→ m may occur at different rates.
Hence W is, in general, not symmetric.



Regularity:

A transition matrix W is called regular if all elements of the matrix product
Ws are nonzero (i.e. positive) for some exponent s.

Regularity guarantees that repeated multiplication leads to convergence:

lim
s→∞

Ws = M =


π1 π2 · · · πN
π1 π2 · · · πN
...

...
...

π1 π2 · · · πN


Further multiplications have no effect:

W ·M =

 W11 · · · W1N
...

...
WN1 · · · WNN

 ·
 π1 · · · πN

...
...

π1 · · · πN

 = M.

The asymptotic distribution is stationary.
The stationary distribution does not depend on initial distribution:

lim
s→∞

~P (s) = ~P (0) ·M = ~π =
(
π1, π2, . . . , πN

)
.

All elements of the stationary distribution are nonzero.

The computation of the stationary distribution ~π via repeated multiplication
of the transition matrix with itself works well for regular matrices.

More generally, transition matrices may have stationary solutions that de-
pend on the initial distribution or stationary solutions that are not asymp-
totic solutions of any kind.
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Eigenvalue problem:

The eigenvalues Λ1, . . . ,ΛN of W are the solutions of the secular equation:

det
(
W − ΛE

)
= 0, Eij = δij.

For an asymmetric W not all eigenvalues Λn are real. We must distinguish
between left eigenvectors ~Xn and right eigenvectors ~Yn:

~Xn ·W = Λn
~Xn, n = 1, . . . , N with ~Xn

.
=
(
Xn1, . . . , XnN

)
W · ~Yn = Λn

~Yn, n = 1, . . . , N with ~Yn =

 Y1n
...

YNn

 .

The two eigenvector matrices are orthonormal to one another:

X ·Y = E, where X
.
=

 ~X1
...
~XN

 , Y
.
=
(
~Y1, . . . , ~YN

)
.

All eigenvalues Λn of the transition matrix W satisfy the condition |Λn| ≤ 1.

There always exists at least one eigenvalue Λn = 1.

The right eigenvector for Λn = 1 is ~Yn =

 1
...
1

.

The left eigenvector for Λn = 1 is a stationary distribution ~Xn =
(
π1, . . . , πN

)
.

If W is regular then the eigenvalue Λn = 1 is unique and its left eigenvector
is the asymptotic distribution ~Xn = ~π, independent of the inital condition.
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Ergodicity:

In an ergodic transition matrix W any two states are connected, directly or
indirectly, by allowed transitions. Regularity implies ergodicity but not vice
versa.

A block-diagonal transition matrix,

W =



W1,1 · · · W1,n 0 · · · 0
...

...
...

...
Wn,1 · · · Wn,n 0 · · · 0

0 · · · 0 Wn+1,n+1 · · · Wn+1,N
...

...
...

...
0 · · · 0 WN,n+1 · · · WN,N


implies non-ergodicity because inter-block transitions are prohibited.

Absorbing states:

If there exists a state n that allows only transitions into it but not out of
it then row n of the transition matrix has diagonal element Wnn = 1 and
off-diagonal elements Wnn′ = 0 (n′ 6= n).

For an ergodic system we then have

lim
s→∞

~P (0) ·Ws = ~π = (0, . . . , 0, 1, 0, . . . , 0),

with the 1 at position n.

Detailed balance:

The detailed balance condition postulates the existence of a stationary dis-
tribution ~π satisfying the relations

Wmnπm = Wnmπn, n,m = 1, . . . , N.

Detailed balance requires that Wmn = 0 if Wnm = 0. Microscopic (quantum
or classical) dynamics guarantees that this requirement is fulfilled.

The detailed balance condition, if indeed satisfied, can be used to determine
the stationary distribution.
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Applications:

B House of the mouse: two-way doors only [nex102]

B House of the mouse: some one-way doors [nex103]

B House of the mouse: one-way doors only [nex104]

B House of the mouse: mouse with inertia [nex105]

B House of the mouse: mouse with memory [nex43]

B Mixing marbles red and white [nex42]

B Random traffic around city block [nex86]

B Modeling a Markov chain [nex87]
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