Markov Process: General Attributes [nln54]

Specification of Markov process:

- $P(x, t_0)$ (initial probability distribution),
- $P(x_1, t_1 | x_2, t_2)$ (conditional probability distribution).

The entire hierarchy of joint probability distributions (see [nln50]) can be generated from these two ingredients if the process is Markovian.

Two times $t_1 \ge t_2$:

$$P(x_1, t_1; x_2, t_2) = P(x_1, t_1 | x_2, t_2) P(x_2, t_2).$$

Three times $t_1 \ge t_2 \ge t_3$:

$$P(x_1, t_1; x_2, t_2; x_3, t_3) = P(x_1, t_1; x_2, t_2 | x_3, t_3) P(x_3, t_3)$$

= $P(x_1, t_1 | x_2, t_2; x_3, t_3) P(x_2, t_2 | x_3, t_3) P(x_3, t_3)$
= $P(x_1, t_1 | x_2, t_2) P(x_2, t_2 | x_3, t_3) P(x_3, t_3).$

Comments:

- The step from the first to the second line uses the previous equation in a reduced sample space (specified by one condition).
- The second condition in the middle line is redundant.

Integration over the variable x_2 at intermediate time t_2 yields

$$\underbrace{P(x_1, t_1; x_3, t_3)}_{P(x_1, t_1 | x_3, t_3)P(x_3, t_3)} = P(x_3, t_3) \int dx_2 P(x_1, t_1 | x_2, t_2) P(x_2, t_2 | x_3, t_3).$$

Division by $P(x_3, t_3)$ then yields the *Chapman-Kolmogorov* equation:

$$P(x_1, t_1 | x_3, t_3) = \int dx_2 P(x_1, t_1 | x_2, t_2) P(x_2, t_2 | x_3, t_3), \quad t_1 \ge t_2 \ge t_3.$$

The Chapman-Kolmogorov equation is a functional equation between conditional probability distributions with many different kinds of solutions. Put differently ...

Any two non-negative and normalized functions P(x,t) and $P(x_1,t_1|x_2,t_2)$ represent a unique Markov process if they satisfy the following two conditions:

•
$$P(x_1, t_1) = \int dx_2 P(x_1, t_1 | x_2, t_2) P(x_2, t_2) \quad (t_1 \ge t_2),$$

• $P(x_1, t_1 | x_3, t_3) = \int dx_2 P(x_1, t_1 | x_2, t_2) P(x_2, t_2 | x_3, t_3) \quad (t_1 \ge t_2 \ge t_3).$

The first condition implies that $\lim_{\Delta t \to 0} P(x_1, t + \Delta t | x_2, t) = \delta(x_1 - x_2).$

Homogeneous process: $P(x_1, t + \Delta t | x_0, t) \doteq P(x_1 | x_0; \Delta t)$ independent of t. The two conditions thus become

•
$$P(x_1, t + \Delta t) = \int dx_2 P(x_1 | x_2; \Delta t) P(x_2, t),$$

• $P(x_1 | x_3; \Delta t_{13}) = \int dx_2 P(x_1 | x_2; \Delta t_{12}) P(x_2 | x_3; \Delta t_{23})$
with $\Delta t_{13} = \Delta t_{12} + \Delta t_{23}.$

For initial condition $P(x,0) = \delta(x-x_0)$ we then have $P(x,t) = P(x|x_0;t)$.