Elements of Set Theory [nln4]

A set S is a collection of elements ϵ_i : $S = \{\epsilon_1, \epsilon_2, \ldots\}$.

All elements of subset A are also elements of S: $A \subset S$.

The **empty set** \emptyset contains no elements.

If S contains n elements then the number of subsets is 2^n .

Hierarchy of subsets: $\emptyset \subset A \subset A \subset S$. **Transitivity**: If $C \subset B$ and $B \subset A$ then $C \subset A$. **Equality**: A = B iff $A \subset B$ and $B \subset A$.

Union: C = A + B or $C = A \cup B$. All elements of S that are contained in A or in B or in both.

Intersection: C = AB or $C = A \cap B$. All elements of S that are contained in A and in B.

Union and intersection are **commutative**, **associative**, and **distributive**: A + B = B + A, AB = BA; (A + B) + C = A + (B + C), (AB)C = A(BC); A(B + C) = AB + AC.

Some consequences:

A + A = A, $A + \emptyset = A$, A + S = S; AA = A, $A\emptyset = \emptyset$, AS = A.

Mutually exclusive subsets have no common elements: $AB = \emptyset$.

Partition $\mathcal{P} = [A_1, A_2, \ldots]$ of S into mutually exclusive subsets: $S = A_1 + A_2 + \ldots$ with $A_i A_j = \emptyset$ for $i \neq j$.

The **complement** \overline{A} of subset A has all elements of S that are not in A.

Some consequences:

 $A + \overline{A} = S$, $A\overline{A} = \emptyset$, $\overline{\overline{A}} = A$, $\overline{S} = \emptyset$, $\overline{\emptyset} = S$.

DeMorgan's law: $\overline{A+B} = \overline{A}\overline{B}$, $\overline{AB} = \overline{A} + \overline{B}$.

Duality principle:

A set identity is preserved if all sets are replaced by their complements.