First projection .

Rewrite relaxation function from [nln31] with projection operators from [nln33]
and apply Dyson identity (X +Y)™! = X! - X7 1V(X +Y)~ 1!
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Simplify both terms:
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Relaxation function after first projection expressed via memory function:
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Memory function ¥ (z) of original problem, {L,|fy)}, can be reinterpreted as
the (as yet non-normalized) relaxation function of a new dynamical problem,
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Projection operator Qg acts as filter on the Liouvillian L, absorbing that part
of dynamics dealt with explicitly in first projection. Explicit information
contained in normalization constant of ¥;(z2).
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!Direct consequence of operator identity (X+Y)(X+Y)™! = X (X+Y) 1 4+Y(X+Y)"! =
1, here with X = z2+4+1LQo, Y =:1LP,.



