Kubo inner product

General properties of inner products:

•
$$\langle A|B\rangle = \langle B|A\rangle^*$$
,

$$\bullet \ \langle A|B\rangle = \langle B|A\rangle^*, \qquad \qquad \bullet \ \langle A|\lambda B\rangle = \lambda \langle A|B\rangle,$$

•
$$\langle A|A\rangle = ||A||^2 \ge 0$$

•
$$\langle A|A\rangle = ||A||^2 \ge 0$$
, • $\langle A|B+C\rangle = \langle A|B\rangle + \langle A|C\rangle$.

Kubo inner product for quantum system:¹

$$\langle A|B\rangle \doteq \frac{1}{\beta} \int_0^\beta d\lambda \, \langle e^{\lambda \mathcal{H}} A^\dagger e^{-\lambda \mathcal{H}} B \rangle,$$

where

$$\langle A \rangle = \frac{1}{Z} \text{Tr}\{e^{-\beta \mathcal{H}}A\}, \qquad Z = \text{Tr}\{e^{-\beta \mathcal{H}}\}, \qquad \beta = \frac{1}{k_B T}.$$

Alternative inner product for quantum systems:²

$$\langle A|B\rangle \doteq \frac{1}{2}\langle A^{\dagger}B + BA^{\dagger}\rangle.$$

Both inner products have the same classical limit:³

$$\langle A|B\rangle \doteq \frac{1}{Z} \int d^n q \, d^n p \, e^{-\beta \mathcal{H}(q,p)} A(q,p) B(q,p).$$

Inner products of [nln31] employ...

 \triangleright quantum Liouville operator: $L = \frac{1}{\hbar}[\mathcal{H},],$

Heisenberg equation of motion: $\frac{dA}{dt} = \frac{i}{\hbar}[\mathcal{H}, A] = iLA.$

ightharpoonup classical Liouville operator: $L = i\{\mathcal{H}, \} = i \sum_{j=1}^{n} \left(\frac{\partial \mathcal{H}}{\partial q_j} \frac{\partial}{\partial p_j} - \frac{\partial \mathcal{H}}{\partial p_j} \frac{\partial}{\partial q_j} \right),$

Hamilton's equation of motion: $\frac{dA}{dt} = -\{\mathcal{H}, A\} = iLA$

¹Designed to satisfy classical fluctuation-dissipation theorem in [nln39].

²Designed to satisfy quantum fluctuation-dissipation theorem in [nln39].

³Option for all inner products: subtract $\langle A^{\dagger} \rangle \langle B \rangle$.