Many-body system perturbed by radiation field [nln25]

Quantum many-body system in thermal equilibrium.

Hamiltonian: \mathcal{H}_0 .

Density operator: $\rho_0 = Z_0^{-1} e^{-\beta \mathcal{H}_0}$ with $\beta = 1/k_B T$, $Z_0 = \text{Tr}[e^{-\beta \mathcal{H}_0}]$.

Dynamical variable: A (describing some attribute of system).

Heisenberg equation of motion: $\frac{dA}{dt} = \frac{i}{\hbar}[\mathcal{H}_0, A].$ Time evolution: $A(t) = e^{i\mathcal{H}_0 t/\hbar} A e^{-i\mathcal{H}_0 t/\hbar}$ (formal solution). Stationarity, $[\rho_0, \mathcal{H}_0] = 0$, implies time-independent expectation values:

$$\langle A(t) \rangle_0 = \frac{1}{Z_0} \operatorname{Tr} \left[e^{-\beta \mathcal{H}_0} e^{i \mathcal{H}_0 t/\hbar} A e^{-i \mathcal{H}_0 t/\hbar} \right] = \frac{1}{Z_0} \operatorname{Tr} \left[e^{-\beta \mathcal{H}_0} A \right] = \text{const.}$$

Time-dependent quantities do exist in thermal equilibrium!

Dynamic correlation function: $\langle A(t)A(0)\rangle_0 = \frac{1}{Z_0} \text{Tr} \left[e^{-\beta \mathcal{H}_0} e^{i\mathcal{H}_0 t/\hbar} A e^{-i\mathcal{H}_0 t/\hbar} A \right]$

In an experiment the system is necessarily perturbed:

$$\mathcal{H}(t) = \mathcal{H}_0 - b(t)B,$$

where b(t) is some kind of radiation field (c-number) and B is the dynamical system variable (operator) to which the field couples.

Examples:

b(t)	В
magnetic field	magnetization
electric field	electric polarization
sound wave	mass density