Brownian motion: panoramic view [nln23]

- Levels of contraction (horizontal)
- Modes of description (vertical)

relevant	<i>N</i> -particle phase space	1-particle	configuration
space		phase space	space
dynamical variables	$\{\mathbf{x}_i,\mathbf{p}_i\}$	x , p	x
theoretical framework	Hamiltonian	Langevin	Einstein
	mechanics	theory	theory
for	generalized	Langevin	Langevin
dynamical	Langevin	equation	equation
variables	equation	(for $dt \ll \tau_R$)	(for $dt \gg \tau_R$)
for	quant./class.	Fokker-Planck	Fokker-Planck
probability	Liouville	equation (Ornstein-	equation (diffusion
distribution	equation	Uhlenbeck process)	process)

contraction \longrightarrow

- Here dt is the time step used in the theory and τ_R is the relaxation time associated with the drag force the Brownian particle experiences.
- The generalized Langevin equation is equivalent to the Hamiltonian equation of motion for a generic classical many-body system and equivalent to the Heisenberg equation of motion for a generic quantum manybody system.