
Contents of this Document [ntc4]

4. Random Variables: Concepts

• Probability distributions [nln46]

• Characteristic function, moments, and cumulants [nln47]

• Cumulants expressed in terms of moments [nex126]

• Generating function and factorial moments [nln48]

• Multivariate distributions [nln7]

• Transformation of random variables [nln49]

• Sums of independent exponentials [nex127]

• Propagation of statistical uncertainty [nex24]

• Chebyshev’s inequality [nex6]

• Law of large numbers [nex7]

• Binomial, Poisson, and Gaussian distribution [nln8]

• Binomial to Poisson distribution [nex15]

• De Moivre - Laplace limit theorem [nex21]

• Central limit theorem [nln9]

• Multivariate Gaussian distribution

• Robust probability distributions [nex19]

• Stable probability distributions [nex81]

• Exponential distribution [nln10]

• Waiting time problem [nln11]

• Pascal distribution [nex22]



Probability Distribution [nln46]

Experiment represented by events in a sample space: S = {A1, A2, . . .}.

Measurements represented by stochastic variable: X = {x1, x2, . . .}.

Maximum amount of information experimentally obtainable is contained in
the probability distribution:

PX(xi) ≥ 0,
∑

i

PX(xi) = 1.

Partial information is contained in moments,

〈Xn〉 =
∑

i

xn
i PX(xi), n = 1, 2, . . . ,

or cumulants (as defined in [nln47]),

• 〈〈X〉〉 = 〈X〉 (mean value)

• 〈〈X2〉〉 = 〈X2〉 − 〈X〉2 (variance)

• 〈〈X3〉〉 = 〈X3〉 − 3〈X〉〈X2〉+ 2〈X〉3

The variance is the square of the standard deviation: 〈〈X2〉〉 = σ2
X .

For continuous stochastic variables we have

PX(x) ≥ 0,

∫
dxPX(x) = 1, 〈Xn〉 =

∫
dx xnP (x).

In the literature PX(x) is often named ‘probability density’ and the term
‘distribution’ is used for

FX(x) =
∑
xi<x

PX(xi) or FX(x) =

∫ x

−∞
dx′PX(x′)

in a cumulative sense.



Characteristic Function [nln47]

Fourier transform: ΦX(k)
.
=

〈
eikx

〉
=

∫ +∞

−∞
dx eikxPX(x).

Attributes: ΦX(0) = 1, |ΦX(k)| ≤ 1.

Moment generating function:

ΦX(k) =

∫ +∞

−∞
dx PX(x)

[
∞∑

n=0

(ik)n

n!
xn

]
=

∞∑
n=0

(ik)n

n!
〈Xn〉

⇒ 〈Xn〉 .
=

∫ +∞

−∞
dx xnPX(x) = (−i)n dn

dkn
ΦX(k)

∣∣∣∣
k=0

.

Cumulant generating function:

ln ΦX(k)
.
=

∞∑
n=1

(ik)n

n!
〈〈Xn〉〉 ⇒ 〈〈Xn〉〉 = (−i)n dn

dkn
ln ΦX(k)

∣∣∣∣
k=0

.

Cumulants in terms of moments (with ∆X
.
= X − 〈X〉): [nex126]

• 〈〈X〉〉 = 〈X〉
• 〈〈X2〉〉 = 〈X2〉 − 〈X〉2 = 〈(∆X)2〉
• 〈〈X3〉〉 = 〈(∆X)3〉
• 〈〈X4〉〉 = 〈(∆X)4〉 − 3〈(∆X)2〉2

Theorem of Marcienkiewicz:
ln ΦX(k) can only be a polynomial if the degree is n ≤ 2.

• n = 1: ln ΦX(k) = ika ⇒ PX(x) = δ(x− a)

• n = 2: ln ΦX(k) = ika− 1

2
bk2 ⇒ PX(x) =

1√
2πb

exp

(
−(x− a)2

2b

)
Consequence: any probability distribution has either one, two, or infinitely
many non-vanishing cumulants.



[nex126] Cumulants expressed in terms of moments

The characteristic function ΦX(k) of a probability distribution PX(x), obtained via Fourier trans-
form as described in [nln47], can be used to generate the moments 〈Xn〉 and the cumulants 〈〈Xn〉〉
via the expansions

ΦX(k) =

∞∑
n=0

(ik)n

n!
〈Xn〉, ln ΦX(k) =

∞∑
n=1

(ik)n

n!
〈〈Xn〉〉.

Use these relations to express the first four cumulants in terms of the first four moments. The
results are stated in [nln47]. Describe your work in some detail.

Solution:



Generating function [nln48]

The generating function GX(z) is a representation of the characteristic func-
tion ΦX(k) that is most commonly used, along with factorial moments and
factorial cumulants, if the stochastic variable X is integer valued.

Definition: GX(z)
.
= 〈zx〉 with |z| = 1.

Application to continuous and discrete (integer-valued) stochastic variables:

GX(z) =

∫
dx zxPX(x), GX(z) =

∑
n

znPX(n).

Definition of factorial moments:

〈Xm〉f
.
= 〈X(X − 1) · · · (X −m + 1)〉, m ≥ 1; 〈X0〉f

.
= 0.

Function generating factorial moments:

GX(z) =
∞∑

m=0

(z − 1)m

m!
〈Xm〉f , 〈Xm〉f =

dm

dzm
GX(z)

∣∣∣∣
z=1

.

Function generating factorial cumulants:

ln GX(z) =
∞∑

m=1

(z − 1)m

m!
〈〈Xm〉〉f , 〈〈Xm〉〉f =

dm

dzm
ln GX(z)

∣∣∣∣
z=1

.

Applications:

B Moments and cumulants of the Poisson distribution [nex16]

B Pascal distribution [nex22]

B Reconstructing probability distributions [nex14]



Multivariate Distributions [nln7]

Let X = (X1, . . . , Xn) be a random vector variable with n components.

Joint probability distribution: P (x1, . . . , xn).

Marginal probability distribution:

P (x1, . . . , xm) =

∫
dxm+1 · · · dxn P (x1, . . . , xn).

Conditional probability distribution: P (x1, . . . , xm|xm+1, . . . , xn).

P (x1, . . . , xn) = P (x1, . . . , xm|xm+1, . . . , xn)P (xm+1, . . . , xn).

Moments: 〈Xm1
1 · · ·Xmn

n 〉 =
∫

dx1 · · · dxn xm1
1 · · ·xmn

n P (x1, . . . , xn).

Characteristic function: Φ(k) = 〈eik·X〉.

Moment expansion: Φ(k) =
∞∑
0

(ik1)
m1 · · · (ikn)mn

m1! . . . mn!
〈Xm1

1 · · ·Xmn
n 〉.

Cumulant expansion: ln Φ(k) =
∞∑
0

′
(ik1)

m1 · · · (ikn)mn

m1! . . . mn!
〈〈Xm1

1 · · ·Xmn
n 〉〉.

(prime indicates absence of term with m1 = · · · = mn = 0).

Covariance matrix: 〈〈XiXj〉〉 = 〈(Xi − 〈Xi〉)(Xj − 〈Xj〉)〉.
(i = j: variances, i 6= j: covariances).

Correlations: C(Xi, Xj) =
〈〈XiXj〉〉√
〈〈Xi〉〉〈〈Xj〉〉

.

Statistical independence of X1, X2: P (x1, x2) = P1(x1)P2(x2).

Equivalent criteria for statistical independence:

• all moments factorize: 〈Xm1
1 Xm2

2 〉 = 〈Xm1
1 〉〈Xm2

2 〉;
• characteristic function factorizes: Φ(k1, k2) = Φ1(k1)Φ2(k2);

• all cumulants 〈〈Xm1
1 Xm2

2 〉〉 with m1m2 6= 0 vanish.

If 〈〈X1X2〉〉 = 0 then X1, X2 are called uncorrelated.
This property does not imply statistical independence.



Transformation of Random Variables [nln49]

Consider two random variables X and Y that are functionally related:

Y = F (X) or X = G(Y ).

If the probability distribution for X is known then the probability distribu-
tion for Y is determined as follows:

PY (y)∆y =

∫
y<f(x)<y+∆y

dxPX(x)

⇒ PY (y) =

∫
dxPX(x)δ

(
y − f(x)

)
= PX

(
g(y)

)
|g′(y)| .

Consider two random variables X1, X2 with a joint probability distribution

P12(x1, x2).

The probability distribution of the random variable Y = X1 + X2 is then
determined as

PY (y) =

∫
dx1

∫
dx2 P12(x1, x2)δ(y − x1 − x2) =

∫
dx1P12(x1, y − x1),

and the probability distribution of the random variable Z = X1X2 as

PZ(z) =

∫
dx1

∫
dx2 P12(x1, x2)δ(z − x1x2) =

∫
dx1

|x1|
P12(x1, z/x1).

If the two random variables X1, X2 are statistically independent we can sub-
stitute P12(x1, x2) = P1(x1)P2(x2) in the above integrals.

Applications:

B Transformation of statistical uncertainty [nex24]

B Chebyshev inequality [nex6]

B Robust probability distributions [nex19]

B Statistically independent or merely uncorrelated? [nex23]

B Sum and product of uniform distributions [nex96]

B Exponential integral distribution [nex79]

B Generating exponential and Lorentzian random numbers [nex80]

B From Gaussian to exponential distribution [nex8]

B Transforming a pair of random variables [nex78]



[nex127] Sums of independent exponentials

Consider n independent random variable X1, . . . , Xn with range xi ≥ 0 and identical exponential
distributions,

P1(xi) =
1

ξ
e−xi/ξ, i = 1, . . . , n.

Use the transformation relation from [nln49],

P2(x) =

∫
dx1

∫
dx2 P1(x1)P1(x2)δ(x− x1 − x2) =

∫
dx1P1(x1)P1(x− x1),

inductively to calculate the probability distribution Pn(x), n ≥ 2 of the stochastic variable

X = X1 + · · ·+Xn.

Find the mean value 〈X〉, the variance 〈〈X2〉〉, and the value xp where Pn(x) has its peak value.

Solution:



[nex24] Transformation of statistical uncertainty.

From a given stochastic variable X with probability distribution PX(x) we can calculate the prob-
ability distribution of the stochastic variable Y = f(X) via the relation

PY (y) =
∫
dxPX(x)δ (y − f(x)) .

Show by systematic expansion that if PX(x) is sufficiently narrow and f(x) sufficiently smooth,
then the mean values and the standard deviations of the two stochastic variables are related to
each other as follows:

〈Y 〉 = f(〈X〉), σY = |f ′(〈X〉)|σX .

Solution:



[nex6] Chebyshev’s inequality

Chebyshev’s inequality is a rigorous relation between the standard deviation σX =
√
〈X2〉 − 〈X〉2

of the random variable X and the probability of deviations from the mean value 〈X〉 greater than
a given magnitude a.

P [(x− 〈X〉)2 > a2] ≤
(σX
a

)2
Prove Chebyshev’s inequality starting from the following relation, commonly used for the trans-
formation of stochastic variables (as in [nln49]):

PY (y) =

∫
dx δ(y − f(x))PX(x) with f(x) = (x− 〈X〉)2.

Solution:



[nex7] Law of large numbers

Let X1, . . . , XN be N statistically independent random variables described by the same probability
distribution PX(x) with mean value 〈X〉 and standard deviation σX =

√
〈X2〉 − 〈X〉2. These ran-

dom variables might represent, for example, a series of measurements under the same (controllable)
conditions. The law of large numbers states that the uncertainty (as measured by the standard
deviation) of the stochastic variable Y = (X1 + · · ·+XN )/N is

σY =
σX√
N
.

Prove this result.

Solution:



Binomial, Poisson, and Gaussian Distributions [nln8]

Consider a set of N independent experiments, each having two possible out-
comes occurring with given probabilities.

events A + B = S
probabilities p + q = 1
random variables n + m = N

Binomial distribution:

PN(n) =
N !

n!(N − n)!
pn(1− p)N−n.

Mean value: 〈n〉 = Np.

Variance: 〈〈n2〉〉 = Npq. [nex15]]

In the following we consider two different asymptotic distributions in the
limit N →∞.

Poisson distribution:

Limit #1: N →∞, p → 0 such that Np = 〈n〉 = a stays finite [nex15].

P (n) =
an

n!
e−a.

Cumulants: 〈〈nm〉〉 = a.

Factorial cumulants: 〈〈nm〉〉f = aδm,1. [nex16]

Single parameter: 〈n〉 = 〈〈n2〉〉 = a.

Gaussian distribution:

Limit #2: N � 1, p > 0 with Np �
√

Npq.

PN(n) =
1√

2π〈〈n2〉〉
exp

(
−(n− 〈n〉)2

2〈〈n2〉〉

)
.

Derivation: DeMoivre-Laplace limit theorem [nex21].

Two parameters: 〈n〉 = Np, 〈〈n2〉〉 = Npq.

Special case of central limit theorem [nln9].



[nex15] Binomial to Poisson distribution

Consider the binomial distribution for two events A,B that occur with probabilities P (A) ≡ p,
P (B) = 1− p ≡ q, respectively:

PN (n) =
N !

n!(N − n)!
pnqN−n,

where N is the number of (independent) experiments performed, and n is the stochastic variable
that counts the number of realizations of event A.
(a) Find the mean value 〈n〉 and the variance 〈〈n2〉〉 of the stochastic variable n.
(b) Show that for N → ∞, p → 0 with Np → a > 0, the binomial distribution turns into the
Poisson distribution

P∞(n) =
an

n!
e−a.

Solution:



[nex21] De Moivre−Laplace limit theorem.

Show that for largeNp and largeNpq the binomial distribution turns into the Gaussian distribution
with the same mean value 〈n〉 = Np and variance 〈〈n2〉〉 = Npq:

PN (n) =
N !

n!(N − n)!
pnqN−n −→ PN (n) ' 1√

2π〈〈n2〉〉
exp

(
− (n− 〈n〉)2

2〈〈n2〉〉

)
.

Solution:



Central Limit Theorem [nln9]

The central limit theorem is a major extension of the law of large numbers.
It explains the unique role of the Gaussian distribution in statistical physics.

Given are a large number of statistically independent random variables Xi, i =
1, . . . , N with equal probability distributions PX(xi). The only restriction on
the shape of PX(xi) is that the moments 〈Xn

i 〉 = 〈Xn〉 are finite for all n.

Goal: Find the probability distribution PY (y) for the random variable Y =
(X1 − 〈X〉+ · · ·+ XN − 〈X〉)/N .

PY (y) =

∫
dx1 PX(x1) · · ·

∫
dxN PX(xN)δ

(
y − 1

N

N∑
i=1

[xi − 〈X〉]

)
.

Characteristic function:

ΦY (k) ≡
∫

dy eikyPY (y), PY (y) =
1

2π

∫
dk e−ikyΦY (k).

⇒ ΦY (k) =

∫
dx1 PX(x1) · · ·

∫
dxN PX(xN) exp

(
i
k

N

N∑
i=1

[xi − 〈X〉]

)
=

[
Φ̄ (k/N)

]N
,

Φ̄

(
k

N

)
=

∫
dx ei(k/N)(x−〈X〉)PX(x) = exp

(
−1

2

(
k

N

)2

〈〈X2〉〉+ · · ·

)

= 1− 1

2

(
k

N

)2

〈〈X2〉〉+ O

(
k3

N3

)
,

where we have performed a cumulant expansion to leading order.

⇒ ΦY (y) =

[
1− k2〈〈X2〉〉

2N2
+ O

(
k3

N3

)]N
N→∞−→ exp

(
−k2〈〈X2〉〉

2N

)
.

where we have used limN→∞(1 + z/N)N = ez.

⇒ PY (y) =

√
N

2π〈〈X2〉〉
exp

(
− Ny2

2〈〈X2〉〉

)
=

1√
2π〈〈Y 2〉〉

e−y2/2〈〈Y 2〉〉

with variance 〈〈Y 2〉〉 = 〈〈X2〉〉/N

Note that regardless of the form of PX(x), the average of a large number of
(independent) measurements of X will be a Gaussian with standard deviation
σY = σX/

√
N .



[nex19] Robust probability distributions

Consider two independent stochastic variables X1 and X2, each specified by the same probability
distribution PX(x). Show that if PX(x) is either a Gaussian, a Lorentzian, or a Poisson distribution,

(i) PX(x) =
1√
2πσ

e−x
2/2σ2

, (ii) PX(x) =
1
π

a

x2 + a2
, (iii) PX(x = n) =

an

n!
e−a.

then the probability distribution PY (y) of the stochastic variable Y = X1 +X2 is also a Gaussian,
a Lorentzian, or a Poisson distribution, respectively. What property of the characteristic function
ΦX(k) guarantees the robustness of PX(x)?

Solution:



[nex81] Stable probability distributions

Consider N independent random variables X1, . . . , XN , each having the same probability distri-
bution PX(x). If the probability distribution of the random variable YN = X1 + · · · +XN can be
written in the form PY (y) = PX(y/cN +γN )/cN , then PX(x) is stable. The multiplicative constant
must be of the form cN = N1/α, where α is the index of the stable distribution. PX(x) is strictly
stable if γN = 0.
Use the results of [nex19] to determine the indices α of the Gaussian and Lorentzian distributions,
both of which are both strictly stable. Show that the Poisson distribution is not stable in the
technical sense used here.

Solution:



Exponential distribution [nln10]

Busses arrive randomly at a bus station.
The average interval between successive bus arrivals is τ .

f(t)dt: probability that the interval is between t and t + dt.

P0(t) =

∫ ∞

t

dt′f(t′): probability that the interval is larger than t.

Relation: f(t) = −dP0

dt
.

Normalizations: P0(0) = 1,

∫ ∞

0

dt f(t) = 1.

Mean value: 〈t〉 ≡
∫ ∞

0

dt tf(t) = τ.

Start the clock when a bus has arrived and consider the events A and B.

Event A: the next bus has not arrived by time t.
Event B: a bus arrives between times t and t + dt.

Assumptions:

1. P (AB) = P (A)P (B) (statistical independence).
2. P (B) = cdt with c to be determined.

Consequence: P0(t + dt) = P (AB̄) = P (A)P (B̄) = P0(t)[1− cdt].

⇒ d

dt
P0(t) = −cP0(t) ⇒ P0(t) = e−ct ⇒ f(t) = ce−ct.

Adjust mean value: 〈t〉 = τ ⇒ c = 1/τ .

Exponential distribution: P0(t) = e−t/τ , f(t) =
1

τ
e−t/τ .

Find the probability Pn(t) that n busses arrive before time t.

First consider the probabilities f(t′)dt′ and P0(t− t′) of the two statistically
independent events that the first bus arrives between t′ and t′ + dt′ and that
no futher bus arrives until time t.

Probability that exactly one bus arrives until time t:

P1(t) =

∫ t

0

dt′f(t′)P0(t− t′) =
t

τ
e−t/τ .

Then calculate Pn(t) by induction.

Poisson distribution: Pn(t) =

∫ t

0

dt′f(t′)Pn−1(t− t′) =
(t/τ)n

n!
e−t/τ .



Waiting Time Problem [nln11]

Busses arrive more or less randomly at a bus station.
Given is the probability distribution f(t) for intervals between bus arrivals.

Normalization:

∫ ∞

0

dt f(t) = 1.

Probability that the interval is larger than t: P0(t) =

∫ ∞

t

dt′f(t′).

Mean time interval between arrivals: τB =

∫ ∞

0

dt tf(t) =

∫ ∞

0

dtP0(t).

Find the probability Q0(t) that no arrivals occur in a randomly chosen time
interval of length t.

First consider the probability P0(t
′ + t) for this to be the case if the interval

starts at time t′ after the last bus arrival. Then average P0(t
′ + t) over the

range of elapsed time t′.

⇒ Q0(t) = c

∫ ∞

0

dt′P0(t
′ + t) with normalization Q0(0) = 1.

⇒ Q0(t) =
1

τB

∫ ∞

t

dt′P0(t
′).

Passengers come to the station at random times. The probability that a
passenger has to wait at least a time t before the next bus is then Q0(t):

Probabilty distribution of passenger waiting times:

g(t) = − d

dt
Q0(t) =

1

τB

P0(t).

Mean passenger waiting time: τP =

∫ ∞

0

dt tg(t) =

∫ ∞

0

dtQ0(t).

The relationship between τB and τP depends on the distribution f(t). In
general, we have τP ≤ τB. The equality sign holds for the exponential distri-
bution.



[nex22] Pascal distribution.

Consider the quantum harmonic oscillator in thermal equilibrium at temperature T . The energy
levels (relative to the ground state) are En = n~ω, n = 0, 1, 2, . . .
(a) Show that the system is in level n with probability

P (n) = (1− γ)γn, γ = exp(−~ω/kBT ).

P (n) is called Pascal distribution or geometric distribution.
(b) Calculate the factorial moments 〈nm〉f and the factorial cumulants 〈〈nm〉〉f of this distribution.
(c) Show that the Pascal distribution has a larger variance 〈〈n2〉〉 than the Poisson distribution
with the same mean value 〈n〉.

Solution:
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