Contents of this Document [ntc4]

- 4. Random Variables: Concepts
 - Probability distributions [nln46]
 - Characteristic function, moments, and cumulants [nln47]
 - Cumulants expressed in terms of moments [nex126]
 - Generating function and factorial moments [nln48]
 - Multivariate distributions [nln7]
 - Transformation of random variables [nln49]
 - Sums of independent exponentials [nex127]
 - Propagation of statistical uncertainty [nex24]
 - Chebyshev's inequality [nex6]
 - Law of large numbers [nex7]
 - Binomial, Poisson, and Gaussian distribution [nln8]
 - Binomial to Poisson distribution [nex15]
 - De Moivre Laplace limit theorem [nex21]
 - Central limit theorem [nln9]
 - Multivariate Gaussian distribution
 - Robust probability distributions [nex19]
 - Stable probability distributions [nex81]
 - Exponential distribution [nln10]
 - Waiting time problem [nln11]
 - Pascal distribution [nex22]

Probability Distribution [nln46]

Experiment represented by events in a sample space: $S = \{A_1, A_2, \ldots\}$. Measurements represented by stochastic variable: $X = \{x_1, x_2, \ldots\}$.

Maximum amount of information experimentally obtainable is contained in the probability distribution:

$$P_X(x_i) \ge 0, \quad \sum_i P_X(x_i) = 1.$$

Partial information is contained in moments,

$$\langle X^n \rangle = \sum_i x_i^n P_X(x_i), \quad n = 1, 2, \dots,$$

or cumulants (as defined in [nln47]),

- $\langle \langle X \rangle \rangle = \langle X \rangle$ (mean value)
- $\langle \langle X^2 \rangle \rangle = \langle X^2 \rangle \langle X \rangle^2$ (variance)
- $\langle \langle X^3 \rangle \rangle = \langle X^3 \rangle 3 \langle X \rangle \langle X^2 \rangle + 2 \langle X \rangle^3$

The variance is the square of the standard deviation: $\langle \langle X^2 \rangle \rangle = \sigma_X^2$.

For continuous stochastic variables we have

$$P_X(x) \ge 0, \quad \int dx P_X(x) = 1, \quad \langle X^n \rangle = \int dx \, x^n P(x).$$

In the literature $P_X(x)$ is often named 'probability density' and the term 'distribution' is used for

$$F_X(x) = \sum_{x_i < x} P_X(x_i) \quad \text{or} \quad F_X(x) = \int_{-\infty}^x dx' P_X(x')$$

in a cumulative sense.

Characteristic Function [nln47]

Fourier transform: $\Phi_X(k) \doteq \langle e^{ikx} \rangle = \int_{-\infty}^{+\infty} dx \, e^{ikx} P_X(x).$ Attributes: $\Phi_X(0) = 1, \quad |\Phi_X(k)| \le 1.$

Moment generating function:

$$\Phi_X(k) = \int_{-\infty}^{+\infty} dx \, P_X(x) \left[\sum_{n=0}^{\infty} \frac{(ik)^n}{n!} \, x^n \right] = \sum_{n=0}^{\infty} \frac{(ik)^n}{n!} \langle X^n \rangle$$
$$\Rightarrow \langle X^n \rangle \doteq \int_{-\infty}^{+\infty} dx \, x^n P_X(x) = (-i)^n \frac{d^n}{dk^n} \Phi_X(k) \Big|_{k=0}.$$

Cumulant generating function:

$$\ln \Phi_X(k) \doteq \sum_{n=1}^{\infty} \frac{(ik)^n}{n!} \langle \langle X^n \rangle \rangle \quad \Rightarrow \ \left\langle \langle X^n \rangle \right\rangle = (-i)^n \frac{d^n}{dk^n} \ln \Phi_X(k) \bigg|_{k=0}.$$

Cumulants in terms of moments (with $\Delta X \doteq X - \langle X \rangle$): [nex126]

- $\langle \langle X \rangle \rangle = \langle X \rangle$
- $\langle \langle X^2 \rangle \rangle = \langle X^2 \rangle \langle X \rangle^2 = \langle (\Delta X)^2 \rangle$
- $\langle \langle X^3 \rangle \rangle = \langle (\Delta X)^3 \rangle$
- $\langle \langle X^4 \rangle \rangle = \langle (\Delta X)^4 \rangle 3 \langle (\Delta X)^2 \rangle^2$

Theorem of Marcienkiewicz:

 $\ln \Phi_X(k)$ can only be a polynomial if the degree is $n \leq 2$.

• n = 1: $\ln \Phi_X(k) = ika \implies P_X(x) = \delta(x-a)$ • n = 2: $\ln \Phi_X(k) = ika - \frac{1}{2}bk^2 \implies P_X(x) = \frac{1}{\sqrt{2\pi b}}\exp\left(-\frac{(x-a)^2}{2b}\right)$

Consequence: any probability distribution has either one, two, or infinitely many non-vanishing cumulants.

[nex126] Cumulants expressed in terms of moments

The characteristic function $\Phi_X(k)$ of a probability distribution $P_X(x)$, obtained via Fourier transform as described in [nln47], can be used to generate the moments $\langle X^n \rangle$ and the cumulants $\langle \langle X^n \rangle \rangle$ via the expansions

$$\Phi_X(k) = \sum_{n=0}^{\infty} \frac{(ik)^n}{n!} \langle X^n \rangle, \qquad \ln \Phi_X(k) = \sum_{n=1}^{\infty} \frac{(ik)^n}{n!} \langle \langle X^n \rangle \rangle.$$

Use these relations to express the first four cumulants in terms of the first four moments. The results are stated in [nln47]. Describe your work in some detail.

Generating function [nln48]

The generating function $G_X(z)$ is a representation of the characteristic function $\Phi_X(k)$ that is most commonly used, along with factorial moments and factorial cumulants, if the stochastic variable X is integer valued.

Definition: $G_X(z) \doteq \langle z^x \rangle$ with |z| = 1.

Application to continuous and discrete (integer-valued) stochastic variables:

$$G_X(z) = \int dx \, z^x P_X(x), \qquad G_X(z) = \sum_n z^n P_X(n).$$

Definition of factorial moments:

$$\langle X^m \rangle_f \doteq \langle X(X-1)\cdots(X-m+1) \rangle, \quad m \ge 1; \quad \langle X^0 \rangle_f \doteq 0.$$

Function generating factorial moments:

$$G_X(z) = \sum_{m=0}^{\infty} \frac{(z-1)^m}{m!} \langle X^m \rangle_f, \quad \langle X^m \rangle_f = \frac{d^m}{dz^m} G_X(z) \bigg|_{z=1}.$$

Function generating factorial cumulants:

$$\ln G_X(z) = \sum_{m=1}^{\infty} \frac{(z-1)^m}{m!} \langle \langle X^m \rangle \rangle_f, \quad \langle \langle X^m \rangle \rangle_f = \frac{d^m}{dz^m} \ln G_X(z) \bigg|_{z=1}.$$

Applications:

- \triangleright Moments and cumulants of the Poisson distribution [nex16]
- \triangleright Pascal distribution [nex22]
- \triangleright Reconstructing probability distributions [nex14]

Multivariate Distributions [nln7]

Let $\mathbf{X} = (X_1, \dots, X_n)$ be a random vector variable with n components. Joint probability distribution: $P(x_1, \dots, x_n)$. Marginal probability distribution:

$$P(x_1,\ldots,x_m) = \int dx_{m+1}\cdots dx_n P(x_1,\ldots,x_n).$$

Conditional probability distribution: $P(x_1, \ldots, x_m | x_{m+1}, \ldots, x_n)$.

$$P(x_1,...,x_n) = P(x_1,...,x_m|x_{m+1},...,x_n)P(x_{m+1},...,x_n).$$

Moments: $\langle X_1^{m_1} \cdots X_n^{m_n} \rangle = \int dx_1 \cdots dx_n \, x_1^{m_1} \cdots x_n^{m_n} P(x_1, \dots, x_n).$ Characteristic function: $\Phi(\mathbf{k}) = \langle e^{i\mathbf{k}\cdot\mathbf{X}} \rangle.$

Moment expansion: $\Phi(\mathbf{k}) = \sum_{0}^{\infty} \frac{(ik_1)^{m_1} \cdots (ik_n)^{m_n}}{m_1! \cdots m_n!} \langle X_1^{m_1} \cdots X_n^{m_n} \rangle.$

Cumulant expansion: $\ln \Phi(\mathbf{k}) = \sum_{0}^{\infty} \frac{(ik_1)^{m_1} \cdots (ik_n)^{m_n}}{m_1! \cdots m_n!} \langle \langle X_1^{m_1} \cdots X_n^{m_n} \rangle \rangle.$ (prime indicates absence of term with $m_1 = \cdots = m_n = 0$).

Covariance matrix: $\langle \langle X_i X_j \rangle \rangle = \langle (X_i - \langle X_i \rangle) (X_j - \langle X_j \rangle) \rangle$. (*i* = *j*: variances, *i* \neq *j*: covariances).

Correlations: $C(X_i, X_j) = \frac{\langle \langle X_i X_j \rangle \rangle}{\sqrt{\langle \langle X_i \rangle \rangle \langle \langle X_j \rangle \rangle}}.$

Statistical independence of X_1, X_2 : $P(x_1, x_2) = P_1(x_1)P_2(x_2)$. Equivalent criteria for statistical independence:

- all moments factorize: $\langle X_1^{m_1} X_2^{m_2} \rangle = \langle X_1^{m_1} \rangle \langle X_2^{m_2} \rangle;$
- characteristic function factorizes: $\Phi(k_1, k_2) = \Phi_1(k_1)\Phi_2(k_2);$
- all cumulants $\langle \langle X_1^{m_1} X_2^{m_2} \rangle \rangle$ with $m_1 m_2 \neq 0$ vanish.

If $\langle \langle X_1 X_2 \rangle \rangle = 0$ then X_1, X_2 are called *uncorrelated*. This property does not imply *statistical independence*.

Transformation of Random Variables [nln49]

Consider two random variables X and Y that are functionally related:

$$Y = F(X)$$
 or $X = G(Y)$.

If the probability distribution for X is known then the probability distribution for Y is determined as follows:

$$P_Y(y)\Delta y = \int_{y < f(x) < y + \Delta y} dx P_X(x)$$

$$\Rightarrow P_Y(y) = \int dx P_X(x)\delta(y - f(x)) = P_X(g(y)) |g'(y)|$$

Consider two random variables X_1, X_2 with a joint probability distribution

$$P_{12}(x_1, x_2)$$

The probability distribution of the random variable $Y = X_1 + X_2$ is then determined as

$$P_Y(y) = \int dx_1 \int dx_2 P_{12}(x_1, x_2) \delta(y - x_1 - x_2) = \int dx_1 P_{12}(x_1, y - x_1),$$

and the probability distribution of the random variable $Z = X_1 X_2$ as

$$P_Z(z) = \int dx_1 \int dx_2 P_{12}(x_1, x_2) \delta(z - x_1 x_2) = \int \frac{dx_1}{|x_1|} P_{12}(x_1, z/x_1).$$

If the two random variables X_1, X_2 are statistically independent we can substitute $P_{12}(x_1, x_2) = P_1(x_1)P_2(x_2)$ in the above integrals.

Applications:

- \triangleright Transformation of statistical uncertainty [nex24]
- \triangleright Chebyshev inequality [nex6]
- \triangleright Robust probability distributions [nex19]
- \triangleright Statistically independent or merely uncorrelated? [nex23]
- \triangleright Sum and product of uniform distributions [nex96]
- \triangleright Exponential integral distribution [nex79]
- \triangleright Generating exponential and Lorentzian random numbers [nex80]
- \triangleright From Gaussian to exponential distribution [nex8]
- \triangleright Transforming a pair of random variables [nex78]

[nex127] Sums of independent exponentials

Consider n independent random variable X_1, \ldots, X_n with range $x_i \ge 0$ and identical exponential distributions,

$$P_1(x_i) = \frac{1}{\xi} e^{-x_i/\xi}, \quad i = 1, \dots, n.$$

Use the transformation relation from [nln49],

$$P_2(x) = \int dx_1 \int dx_2 P_1(x_1) P_1(x_2) \delta(x - x_1 - x_2) = \int dx_1 P_1(x_1) P_1(x - x_1),$$

inductively to calculate the probability distribution $P_n(x)$, $n \ge 2$ of the stochastic variable

$$X = X_1 + \dots + X_n.$$

Find the mean value $\langle X \rangle$, the variance $\langle \langle X^2 \rangle \rangle$, and the value x_p where $P_n(x)$ has its peak value.

[nex24] Transformation of statistical uncertainty.

From a given stochastic variable X with probability distribution $P_X(x)$ we can calculate the probability distribution of the stochastic variable Y = f(X) via the relation

$$P_Y(y) = \int dx \, P_X(x) \delta \left(y - f(x) \right) \, dx$$

Show by systematic expansion that if $P_X(x)$ is sufficiently narrow and f(x) sufficiently smooth, then the mean values and the standard deviations of the two stochastic variables are related to each other as follows:

$$\langle Y \rangle = f(\langle X \rangle), \quad \sigma_Y = |f'(\langle X \rangle)|\sigma_X.$$

[nex6] Chebyshev's inequality

Chebyshev's inequality is a rigorous relation between the standard deviation $\sigma_X = \sqrt{\langle X^2 \rangle - \langle X \rangle^2}$ of the random variable X and the probability of deviations from the mean value $\langle X \rangle$ greater than a given magnitude a.

$$P[(x - \langle X \rangle)^2 > a^2] \le \left(\frac{\sigma_X}{a}\right)^2$$

Prove Chebyshev's inequality starting from the following relation, commonly used for the transformation of stochastic variables (as in [nln49]):

$$P_Y(y) = \int dx \,\delta(y - f(x)) P_X(x) \text{ with } f(x) = (x - \langle X \rangle)^2.$$

[nex7] Law of large numbers

Let X_1, \ldots, X_N be N statistically independent random variables described by the same probability distribution $P_X(x)$ with mean value $\langle X \rangle$ and standard deviation $\sigma_X = \sqrt{\langle X^2 \rangle - \langle X \rangle^2}$. These random variables might represent, for example, a series of measurements under the same (controllable) conditions. The law of large numbers states that the uncertainty (as measured by the standard deviation) of the stochastic variable $Y = (X_1 + \cdots + X_N)/N$ is

$$\sigma_Y = \frac{\sigma_X}{\sqrt{N}}.$$

Prove this result.

Binomial, Poisson, and Gaussian Distributions [nln8]

Consider a set of N independent experiments, each having two possible outcomes occurring with given probabilities.

events	A + B = S
probabilities	p+q=1
random variables	n+m=N

Binomial distribution:

$$P_N(n) = \frac{N!}{n!(N-n)!} p^n (1-p)^{N-n}.$$

Mean value: $\langle n \rangle = Np$.

Variance: $\langle \langle n^2 \rangle \rangle = Npq.$ [nex15]]

In the following we consider two different asymptotic distributions in the limit $N \to \infty$.

Poisson distribution:

Limit #1: $N \to \infty$, $p \to 0$ such that $Np = \langle n \rangle = a$ stays finite [nex15].

$$P(n) = \frac{a^n}{n!} e^{-a}.$$

Cumulants: $\langle \langle n^m \rangle \rangle = a$. Factorial cumulants: $\langle \langle n^m \rangle \rangle_f = a \delta_{m,1}$. [nex16] Single parameter: $\langle n \rangle = \langle \langle n^2 \rangle \rangle = a$.

Gaussian distribution:

Limit #2: $N \gg 1$, p > 0 with $Np \gg \sqrt{Npq}$.

$$P_N(n) = \frac{1}{\sqrt{2\pi \langle \langle n^2 \rangle \rangle}} \exp\left(-\frac{(n-\langle n \rangle)^2}{2 \langle \langle n^2 \rangle \rangle}\right).$$

Derivation: DeMoivre-Laplace limit theorem [nex21].

Two parameters: $\langle n \rangle = Np$, $\langle \langle n^2 \rangle \rangle = Npq$.

Special case of central limit theorem [nln9].

[nex15] Binomial to Poisson distribution

Consider the binomial distribution for two events A, B that occur with probabilities $P(A) \equiv p$, $P(B) = 1 - p \equiv q$, respectively:

$$P_N(n) = \frac{N!}{n!(N-n)!} p^n q^{N-n}$$

where N is the number of (independent) experiments performed, and n is the stochastic variable that counts the number of realizations of event A.

(a) Find the mean value $\langle n \rangle$ and the variance $\langle \langle n^2 \rangle \rangle$ of the stochastic variable n.

(b) Show that for $N \to \infty$, $p \to 0$ with $Np \to a > 0$, the binomial distribution turns into the Poisson distribution

$$P_{\infty}(n) = \frac{a^n}{n!} e^{-a}.$$

[nex21] De Moivre–Laplace limit theorem.

Show that for large Np and large Npq the binomial distribution turns into the Gaussian distribution with the same mean value $\langle n \rangle = Np$ and variance $\langle \langle n^2 \rangle \rangle = Npq$:

$$P_N(n) = \frac{N!}{n!(N-n)!} p^n q^{N-n} \longrightarrow P_N(n) \simeq \frac{1}{\sqrt{2\pi \langle \langle n^2 \rangle \rangle}} \exp\left(-\frac{(n-\langle n \rangle)^2}{2 \langle \langle n^2 \rangle \rangle}\right).$$

Central Limit Theorem [nln9]

The central limit theorem is a major extension of the law of large numbers. It explains the unique role of the Gaussian distribution in statistical physics.

Given are a large number of statistically independent random variables X_i , i = 1, ..., N with equal probability distributions $P_X(x_i)$. The only restriction on the shape of $P_X(x_i)$ is that the moments $\langle X_i^n \rangle = \langle X^n \rangle$ are finite for all n.

Goal: Find the probability distribution $P_Y(y)$ for the random variable $Y = (X_1 - \langle X \rangle + \cdots + X_N - \langle X \rangle)/N$.

$$P_Y(y) = \int dx_1 P_X(x_1) \cdots \int dx_N P_X(x_N) \delta\left(y - \frac{1}{N} \sum_{i=1}^N [x_i - \langle X \rangle]\right).$$

Characteristic function:

$$\begin{split} \Phi_Y(k) &\equiv \int dy \, e^{iky} P_Y(y), \quad P_Y(y) = \frac{1}{2\pi} \int dk \, e^{-iky} \Phi_Y(k). \\ \Rightarrow \ \Phi_Y(k) &= \int dx_1 \, P_X(x_1) \cdots \int dx_N \, P_X(x_N) \exp\left(i\frac{k}{N} \sum_{i=1}^N [x_i - \langle X \rangle]\right) \\ &= \left[\bar{\Phi}\left(k/N\right)\right]^N, \\ \bar{\Phi}\left(\frac{k}{N}\right) &= \int dx \, e^{i(k/N)(x - \langle X \rangle)} P_X(x) = \exp\left(-\frac{1}{2} \left(\frac{k}{N}\right)^2 \langle \langle X^2 \rangle + \cdots\right) \right) \\ &= 1 - \frac{1}{2} \left(\frac{k}{N}\right)^2 \langle \langle X^2 \rangle + O\left(\frac{k^3}{N^3}\right), \end{split}$$

where we have performed a cumulant expansion to leading order.

$$\Rightarrow \Phi_Y(y) = \left[1 - \frac{k^2 \langle \langle X^2 \rangle \rangle}{2N^2} + O\left(\frac{k^3}{N^3}\right)\right]^N \xrightarrow{N \to \infty} \exp\left(-\frac{k^2 \langle \langle X^2 \rangle \rangle}{2N}\right)$$

where we have used $\lim_{N\to\infty} (1+z/N)^N = e^z$.

$$\Rightarrow P_Y(y) = \sqrt{\frac{N}{2\pi\langle\langle X^2\rangle\rangle}} \exp\left(-\frac{Ny^2}{2\langle\langle X^2\rangle\rangle}\right) = \frac{1}{\sqrt{2\pi\langle\langle Y^2\rangle\rangle}} e^{-y^2/2\langle\langle Y^2\rangle\rangle}$$

with variance $\langle\langle Y^2\rangle\rangle=\langle\langle X^2\rangle\rangle/N$

Note that regardless of the form of $P_X(x)$, the average of a large number of (independent) measurements of X will be a Gaussian with standard deviation $\sigma_Y = \sigma_X / \sqrt{N}$.

[nex19] Robust probability distributions

Consider two independent stochastic variables X_1 and X_2 , each specified by the same probability distribution $P_X(x)$. Show that if $P_X(x)$ is either a Gaussian, a Lorentzian, or a Poisson distribution,

(i)
$$P_X(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-x^2/2\sigma^2}$$
, (ii) $P_X(x) = \frac{1}{\pi} \frac{a}{x^2 + a^2}$, (iii) $P_X(x = n) = \frac{a^n}{n!} e^{-a}$.

then the probability distribution $P_Y(y)$ of the stochastic variable $Y = X_1 + X_2$ is also a Gaussian, a Lorentzian, or a Poisson distribution, respectively. What property of the characteristic function $\Phi_X(k)$ guarantees the robustness of $P_X(x)$?

[nex81] Stable probability distributions

Consider N independent random variables X_1, \ldots, X_N , each having the same probability distribution $P_X(x)$. If the probability distribution of the random variable $Y_N = X_1 + \cdots + X_N$ can be written in the form $P_Y(y) = P_X(y/c_N + \gamma_N)/c_N$, then $P_X(x)$ is *stable*. The multiplicative constant must be of the form $c_N = N^{1/\alpha}$, where α is the *index* of the stable distribution. $P_X(x)$ is *strictly stable* if $\gamma_N = 0$.

Use the results of [nex19] to determine the indices α of the Gaussian and Lorentzian distributions, both of which are both strictly stable. Show that the Poisson distribution is not stable in the technical sense used here.

Exponential distribution [nln10]

Busses arrive randomly at a bus station.

The average interval between successive bus arrivals is τ .

f(t)dt: probability that the interval is between t and t + dt.

 $P_0(t) = \int_t^\infty dt' f(t')$: probability that the interval is larger than t.

Relation: $f(t) = -\frac{dP_0}{dt}$.

Normalizations: $P_0(0) = 1$, $\int_0^\infty dt f(t) = 1$.

Mean value: $\langle t \rangle \equiv \int_0^\infty dt \, t f(t) = \tau.$

Start the clock when a bus has arrived and consider the events A and B.

Event A: the next bus has not arrived by time t.

Event B: a bus arrives between times t and t + dt.

Assumptions:

- 1. P(AB) = P(A)P(B) (statistical independence).
- 2. P(B) = cdt with c to be determined.

Consequence: $P_0(t + dt) = P(A\bar{B}) = P(A)P(\bar{B}) = P_0(t)[1 - cdt].$

$$\Rightarrow \frac{d}{dt}P_0(t) = -cP_0(t) \Rightarrow P_0(t) = e^{-ct} \Rightarrow f(t) = ce^{-ct}$$

Adjust mean value: $\langle t \rangle = \tau \implies c = 1/\tau$.

Exponential distribution: $P_0(t) = e^{-t/\tau}$, $f(t) = \frac{1}{\tau}e^{-t/\tau}$.

Find the probability $P_n(t)$ that n busses arrive before time t.

First consider the probabilities f(t')dt' and $P_0(t-t')$ of the two statistically independent events that the first bus arrives between t' and t' + dt' and that no further bus arrives until time t.

Probability that exactly one bus arrives until time t:

$$P_1(t) = \int_0^t dt' f(t') P_0(t-t') = \frac{t}{\tau} e^{-t/\tau}.$$

Then calculate $P_n(t)$ by induction.

Poisson distribution:
$$P_n(t) = \int_0^t dt' f(t') P_{n-1}(t-t') = \frac{(t/\tau)^n}{n!} e^{-t/\tau}.$$

Waiting Time Problem [nln11]

Busses arrive more or less randomly at a bus station.

Given is the probability distribution f(t) for intervals between bus arrivals.

Normalization: $\int_0^\infty dt f(t) = 1.$

Probability that the interval is larger than t: $P_0(t) = \int_t^\infty dt' f(t')$.

Mean time interval between arrivals: $\tau_B = \int_0^\infty dt \, t f(t) = \int_0^\infty dt P_0(t).$

Find the probability $Q_0(t)$ that no arrivals occur in a randomly chosen time interval of length t.

First consider the probability $P_0(t'+t)$ for this to be the case if the interval starts at time t' after the last bus arrival. Then average $P_0(t'+t)$ over the range of elapsed time t'.

$$\Rightarrow Q_0(t) = c \int_0^\infty dt' P_0(t'+t) \text{ with normalization } Q_0(0) = 1$$
$$\Rightarrow Q_0(t) = \frac{1}{\tau_B} \int_t^\infty dt' P_0(t').$$

Passengers come to the station at random times. The probability that a passenger has to wait at least a time t before the next bus is then $Q_0(t)$:

Probability distribution of passenger waiting times:

$$g(t) = -\frac{d}{dt}Q_0(t) = \frac{1}{\tau_B}P_0(t).$$

Mean passenger waiting time: $\tau_P = \int_0^\infty dt \, tg(t) = \int_0^\infty dt Q_0(t).$

The relationship between τ_B and τ_P depends on the distribution f(t). In general, we have $\tau_P \leq \tau_B$. The equality sign holds for the exponential distribution.

[nex22] Pascal distribution.

Consider the quantum harmonic oscillator in thermal equilibrium at temperature T. The energy levels (relative to the ground state) are $E_n = n\hbar\omega$, n = 0, 1, 2, ...(a) Show that the system is in level n with probability

$$P(n) = (1 - \gamma)\gamma^n, \quad \gamma = \exp(-\hbar\omega/k_BT).$$

P(n) is called *Pascal* distribution or *geometric* distribution.

(b) Calculate the factorial moments $\langle n^m \rangle_f$ and the factorial cumulants $\langle \langle n^m \rangle \rangle_f$ of this distribution. (c) Show that the Pascal distribution has a larger variance $\langle \langle n^2 \rangle \rangle$ than the Poisson distribution with the same mean value $\langle n \rangle$.