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Stage for Recursion Method ..

Recursion method as applied to many-body dynamics:
backdrop, props, protagonists.
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Modules of Recursion Method .«

Recursion method as applied to many-body dynamics:
main lines of formal development.
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Representations of Recursion Method ..

Object of interest: time-dependent correlation function (A(t)A).

Recursive part of method: orthogonal expansion of carrier of time evolution.

Heisenberg picture:

e time evolution prescribed by Heisenberg (or Hamilton) equation,

e time evolution carried by dynamical variable,

e Liouvillian operator generates new directions.

Schrodinger picture:

e time evolution prescribed by Schrodinger equation,

e time evolution carried by wave function,

e Hamiltonian operator generates new directions.

Liouvillian representation

Hamiltonian representation

d 1
A(t) = 1LquA(t) = S [H A(1)]
%A(t} = 1LaA(t) = —{H, A(t)}

d
0 (8) = HIp(0)

At) = M A0) = 3 CL1 i)

(1)) = e~ M09 (0)) = > Di(t)] fi)

|fo) = A(0), [ fre1) = oL|fr) — ...

|fo) = [4(0)) = Algo),

Tr [e—BH ez’Ht/hAe—z’Ht/h A]
N——
A(t)

GZEOt/h<¢O|A€_ZHt/hA|¢O>
—_———
[¥(1))

i) = Hlfa) =



Orthogonal Expansion of Dynamical Variables .

A(t) =) Cul®)l ). (1)

Step #1: [M.H. Lee]
e Orthogonal basis, |fo), |f1), ..., with initial condition, |fy) = A(0)
e Quantum statistics: |f;) form orthogonal set of operators.
e Classical statistics: |fx) form orthogonal set of phase-space functions.

e Generation of orthogonal directions: (fi|eL|fr) = 0.

Recurrence relations for basis vectors | fx):
Urealfio) o190 (2)

9

| fer1) = oLl fi) + Dkl frm1)y  Dppr = (felfr)

Conditions: |f_1) =0, |[fo) =A, Ag=0.

First three iterations spelled out in [nIn83].

Step #2: [M.H. Lee]

e Time-dependent coefficients of basis vectors: Ci(t).
e Substitute (1) into equation of motion from [nln81]: dA/dt =1L A.

e d/dt acts on C(t) and L acts on |f).

Comparison of coefficients in
> )l fr) ZZCk(t)kaH) — Aglfral) ] (3)
k=0 k=0 ZL‘@»
yields set of coupled, linear, first-order ODEs for functions Cy(t):
Ck(t) - Ck_l(t) - Ak+1ck+1(t>, ]{7 - O, 1, 2, e (4)
Conditions: C_1(t) =0, Cy(0) =ro, k=0,1,2,...
Normalized fluctuation function (see [nln39]):
(A@)]A0) _ (1)
Co(t) = = =—=. 5
0= A0 ~ 0) ©)



Gram-Schmidt Orthogonalization I ..«
First three iterations in step #1 of [nln82].

Initial condition:

| fo) = A.
First iteration:

1Lifo) = |f1) = (folfi) = (foloL|fo) = 0.

Second iteration:

L) = 1f2) = Adlfo) = (filfe) = (flLIfi) +A01 (il fo) =0,
0 0
= (folf2) = (foloL|f1) +A1(folfo) =0
—({f1lf1)
(f1lf1)

8=y

Third iteration:

WLl fa) = |f3) — Azl f1) — Talfo)

= (folf3) = (faltL| f2) +D2 (fol f1) +T2 (f2| fo) = 0,
0 0 0

= (filfs) = (ilhL|fo) +A2(filf1) + T2 (f1]fo) = 0
—(f2lf2) 0

: _(falf2)
A = filf)

= (folf3) = (foloL| f2) +A2 (fol f1) +T2(folfo) =0
(f1]f2)=0 0

—~

—~



Relaxation Function and Spectral Density s

Relaxation function via Laplace transform:

eal(z) = / et (1), (1)

0

Coupled ODEs for Cy(t) become coupled algebraic equations for ¢ (z):!

2ep(2) — 0o = ck—1(2) — Dprrcpra(2), k=0,1,2,... (2)

Condition: c_(z) = 0.

Recursive construction of continued fraction representation for ¢y(z):

k=0: zco(z) —1==A1c1(2) = co(z2) = L ,
Z+A101(Z)
co(2)
E=1: ze1(2) = co(2) — Agea(2) = al?) = ! ;
CO(Z) Z+A2@
c1(2)
= aolz) = - 3)
z+ :
Ay
zZ+
Z4 .

Spectral density ®(w) from relaxation function ¢y(z): combine Fourier trans-
form with inverse Laplace transform.

+o00
Bo(w) = / dt 1 Co 1),

o0

Co(t) L/cl,7562tc()(,2') ) ;
c

- 2m

= Pp(w) = 21%% Relco(e —w)].  (4)

1Use /0 T dtetCu(t) = [e-ztck(t)}zo . /0 " dt(—2)eOu(t) = zen(z) — Crl(0).



Moment Expansion vs Continued Fraction I ...

Moment expansions of fluctuation function (see [nIn78]):

~1
CO(t) = Z ((2]{3

k=0

k
! Mgkt2k, MO == 1 (1)

Asymptotic expansion and continued-fraction representation of relaxation
function:

0 0 1
eo(2) = / At e Co(t) = 3 Moz~ @) = @)
0 k=0 Ay
i ——
Ay
zZ+

Transformation relations between { My, } and {A,,} extracted from inspecting
the two representations of ¢(z), using the algebraic equations in [nln84].

Forward direction: {My,} — {A,}
Set values: M) = My, MGV =0, k=1,2... K; A =N7Ag=1
Then evaluate

n—1 n—2)
MQ(k ) _ M2(k—2
An—l An—2 ’

My = A, = MY (3)

sequentially for k =n,n+1,..., Kandn=1,2,... K.

Reverse direction: {A,} — {My}
Set values: Mz(’,? = Ay, MQ(,;D =0, k=1,2,....K; A_1=A7Ar=1

Then evaluate

A,
n—1 n n—1 n—2 0
M2(k ) = An—lMék) + A, MZ(k—2)> My, = MQ(k) (4)

sequentially forn =k, k—1,...,1and k =1,2,... K.



Forward direction: {My} — {A,}

k\n 0l 1 2 3 4
0 1| M, M, M M
1 M, M, M My
M4 M(j M8
9 S V) 5 _ v 8 _
M, 2 M, 4 M, 6
M M
5 _ 8 _ M
5 My ~ ' MM, ° Mg
M4 MQ M4 M2
i ¥/ i ¥/
M, 2 M, 2

Reverse direction: {A,} — {My}

n\k:O 1 2 3

0 I | A | A(AL+ Ag) | A[AA3 + (A + AQ)Q]

1 Ar | AL(A] + Ag) | A[AsAs + (A + Ay)?
2 Ay Ag(Aq + Ay + Ag)
3 As

First two steps in forward directions spelled out:

o co(2) =2 — Moz + Myz™® — Mgz™ "+ ...
() =1 a(e) = My =t M M
—~

Aq
M M M,
_ 2 M4 4 M6 6 ‘M8 -8
o ci(2) =7z M22 +M22 ]\/[22 +..
M. M,
o Avco(2) =co(z) — ze1(2) = (—4 —M2> 273 — (—b —M4) 275+
Mg 2
Ao



Link to Generalized Langevin Equation .

Define two functions from the ¢;(z) introduced in [nln84]:

S(e) = A2 g = 2 1)

Rewrite algebraic equations (2) for k = 0 of [nln84] using ¥(z) and by(2):

zco(2) + X(2)eo(2) = 1, (2a)
zep(2) + 3(2)ep(2) = be(2), k=1,2,... (2b)
Inverse Laplace transforms of these functions then satisfy
t
Co(t) +/ dt'S(t —t')Co(t') =0, (3a)
0
t
Cr(t) +/ St — )Cu(t) = Bet) k= 1,2, . (3b)
0
Recall orthogonal expansion (1) in [nln82] of dynamical variable:
A(t) =D Crl(®)lf). (4)
k=0

From (3) and (4) follows generalized Langevin equation [M. H. Lee 1983]:!
A(t) +/ dt'S(t — t)A(t)) = F(t). (5)
0

Orthogonal exapnsion of random force:

F(t) = Z Bi()|fx),  Br(0) = dp1. (6)
k=1
Absence of correlations between dynamical variable and random force:
(F(D)]A0) = > Bu(t){fel fo) = 0. (7)
k=1

Fluctuation-dissipation relation between (¢) (memory function) and F(t):

(FO)IF(0)) = By(t)(f1l 1) = A By () {folfo) = S) (fol fo).  (8)

Lower integration boundary is specific to initial-value problem under consideration.



Orthogonal Expansion of Wave Functions ..

() = De(®)|fi). (1)

Step #1:

e Hamiltonian: H = H — E, (generator of new directions).
e Ground state: |¢y).
e Dynamical variable of interest: A.

e Orthogonal basis, |fo), |f1), ..., with initial condition, |fy) = A|¢o).

Recurrence relations for basis vectors:

|fk+1> :ﬁ|fk>_ak|fk>_bi|f/€—l>a k:O71727"' (23“)
IR .
SR T Gl (2b)

Conditions: |f_1) =0, |[fo) = Aldo), bo = 0.

First three iterations spelled out in [nln91].
Step #2: (setting h = 1)
e Time-dependent coefficients of basis vectors: Dy(t).

e Substitute (1) into eq. of motion from [nIn81]: Z%W(t)) = H|Y(t)).
e d/dt acts on Dy (t) and H on |f).

Comparison of coefficients in

VY DOfi) =D D[] frer + arl fi) + 07l fi1) ] (3)
k=0 k=0 =
H| fr)
yields set of coupled, linear, first-order ODEs for functions Dy/(t):
ZDk(t) = Dk_l(t) + G,ka(t) + bka-&-l (t), k= 0, 1, 2, ce (4)

Conditions: D_y(t) =0, Dy(0) = 6j0.

Normalized correlation function:

~{folv(®) (gl A)A(=t)[do)  S(t) . =
DO =" = @l A0AD % g0 @ B




Gram-Schmidt Orthogonalization II ...,

First three iterations in step #1 of [nln90].

Initial condition:

|fo) = Aldo).-

First iteration:
’f1> = ﬂ‘fo) - ao‘f0>

= (folf1) = (folH|fo) — ao(folfo) =0

(folH|fo)
(folfo)

if apg =

Second iteration:
| f2) = 7'2|f1> —a1|f1) — b?|f0>
= (folf2) = (folH|f1) —ar (fol fr) =b3(fol fo) = O
~———

~——
(falf1) 0
(f1lf1)
f 2=
ERCRNTATSS
= (filfo) = (AlH|F1) — ar(fil fr) — b3 (falfo) = O
0
. (AHIA)
R TATA
Third iteration:
| f3) = 7'_[|f2> —ag| f1) — b§|f0> — &l fo)
= (folfs) =---=0 if =0,
g a2 Wlf2)
= (filfs) = 0 if b il
= (folfs) = =0 ifa= (2[7]2)

(f2lfo)




Structure Function .o

Laplace transform (with 1 = —z):

dr(¢) = / dt "' Dy (t). (1)
0
Coupled ODEs for Dy(t) become coupled algebraic equations for dj(():

(g - ak)dk(C) - Z(Sk,ﬁ - dk—1<<) + biJrldk-i—l(C)? k=0,1,2,... (2)

Condition: d_1(¢) = 0.

Recursive construction of continued fraction representation for dy(():

7

k=0: ((—ap)do(¢) —1=02d1(¢) = do(¢) =

di(¢)’
Cma—big o
o - , d(¢) _ 1
k=1: (C al)dl(g) - dO(C) + deQ(C) = do(C) B C_ i — bZdQ(C) ’
P20
= do(o = Z b2 <3)
¢—ag— 1 2
(a2
1 Q_CLQ_"'

Structure function S(w) from dy(¢): combine Fourier transform with inverse
Laplace transform.

S()(w) = /+OO dt eWtDo(t),
Dy(t) = —zi /C d¢ e “'dy(¢)

™

= So(w) = 212% Reldo(w +12€)]. (4)



Moment Expansion vs Continued Fraction II ..

Moment expansion of correlation function (see [nln78]):

n.

o] AL
Dy(t) = ZM”( Z') , Moy, as in [nIn85]. (1)
n=0
Asymptotic expansion and continued-fraction representation:
7

do(¢) = /O dte'Do(t) =1y M, = 7 (2)
n=0 1
¢ —ag—

C—a;—---

Transformation relations between {M,} and {a,,b?} extracted from inspec-
tion of the two representation in (2).

e Conversion {a,,b2} < {Ax} in two steps.
e First step: {a,, b2} < {M,} here.
e Second step: {Mar} <> {Ax} in [nln85].

Calculating {a,,, b2} first is most practical in many applications. Key features
of dynamical quantities (bandwidth, gap, singularity structure) are most
effectively extracted from {Ay}.

Forward direction: {M,} — {a,,0?}
Initialize auxiliary quantities:
MO = (-1 My, LY = (1) Mypy, k=0,....2K.  (3)

Evaluate sequentially for £ = n, ..., 2K —n+1 (in two successive inner loops)
and n =1,...,2K (outer loop):

) D M e
Mk(:n) = Ll(cn Y- Lgill) Mlzn—l)’ L/(fn) - Mk(z)l N Mlzn—l)' (4)
n—1 n n—1

Identify continued-fraction coefficients among auxiliary quantities:

¥=M"  a,=—-L" n=0,.. . K. (5)



Reverse direction: {a,,02} — {M,}
Initialize auxiliary quantities, setting b3 = b*; = 1:
M®=p: L™ =_q, n=0,...K; (6a)

MIY =0, k=0,... 2K +1. (6b)

Evaluate sequentially for n = 0,...,min(K,2K — j) (inner loop) and j =
0,...,2K + 1 (outer loop):

2
) _gepm b e pm) ) Gng ()
Mn+j+1 - ann+j + b2 1Mn+j ) Ln+j+1 - Mn+j+1 - b_QMn+j+1‘ (7)
Identify moments among auxiliary quantities:
M, = (-1)"M", n=0,...,2K +1. (8)

Results of a few iterations in the forward sequence (left) and in the reverse
sequence (right):

ag = M1 M1 = Qq
b2 = M, — M? My = a2 + b?
Ms — M3

ay = MQ — M% — 2M1 M3 = (a‘g + 2@0[)? + b%al)

M, — My M.
bg ]{}2_]\1423—]\42 M4:bﬂa(2)+a%+a0a1+b%+bg]

1
M7} — M M7 — M 3 2, 12
L= I 2M1] [Mg EyYP + M, +ay [ao + 2apb] + blal]




Genetic Code of Spectral Densities o

Justification of biological term used for analogy:

e Spectral densities, structure functions, dissipation functions, and Green’s
functions for any given classical or quantum many-body system and
any choice of dynamical variable are related to each other by rigorous
relations (see [nln39] and nln88§)).

e The (symmetric) spectral density is fully characterized by a Ag-sequence
of continued-fraction coefficients [nln84].

e The recursion method presents a user-friendly and systematic way to
calculate coefficients A, sequentially, either directly (Liouvillian repre-
sentation [nln83]) or indirectly (Hamiltonian representation [nln91]).

e Hence the Ag-sequence is a genetic code of sorts: (i) it is a code of
retrievable information about key features of spectral densities as listed
below; (ii) it is generative in nature in the sense that it can be used to
produce spectral densities with these very features in conjunction with
specific termination schems of continued fractions.

Features of spectral densities that can be identified in Aj-sequences (incom-
plete list):

e Position and intensity of individual spectral lines [nln99].

e Bandwidth of spectral densities with compact support [nln100].

e Band-edge singularity of spectral densities with compact support [nln100].
e Infrared singularity of spectral density with compact support [nIn100].

e Bandwidth and gap size of spectral densities with bounded support
[nln101].

e Infrared singularity of spectral densities with unbounded support [nln102].
e Large-w asymptotics of spectral densities with unbounded support [nln102].

e Gap size of spectral densites with unbounded support [nIn103].



Spectral Lines from Finite Aj,-Sequences .o

Orthogonal expansion in [nln83] comes natural stop: |fxi1) = 0.

Relaxation function has K + 1 poles on imaginary z-axis.

1
= ¢o(2) = = pr(?) )
Al QK-‘rl(z)
zZ+
AV
zZ+
oy Bx
z
L
Spectral density: ®g(w) =7 Z w [0(w — wy) + 0(w + wl)}

=1

e /{: number of nonzero continued-fraction coefficients Ay.
e L: number of spectral lines (with frequencies wy).

2L —1 (odd) if all w; > 0,

* Relation: K = { 2L — 2 (even) if w; = 0 occurs.

Im[21 ImL2] b Im 2]
W, Wy, Wy,
w, } ,=0
T i v !y s ) plic
Relz] Relz] Reflz]

—®

Special case u; = uy for L = 2:
2wiw?

2 2"
wi + wj

1
Ay = 5(&’% +UJ§), Ao =A1 = Az, Az=

Limit w; — 0 implies Az — 0 and Ay — A;.



Spectral Densities with Bounded Support ..

Consider spectral densities with convergent Aj-sequences.

Bandwidth:

1
If lim Ay, = ng then ®g(w) has compact support on the interval |w| < wy.

k—o0

Band edge singularity:
Model spectral density with singularities only at the band edges:*
27w;§6 1

(I)()(W) = m((ﬂg —w2)’3, |CL)| < Wy, B > —1.

Associated Ag-sequence [Magnus 1985] and its asymptotic expansion:

wik(k +20) 1
(2k+26—-1)2k+26+1) 4

1 —4p?

Ay =

Graphical representations for two cases [Viswanath and Miiller 1994]:

g=1 \ < g=0

Al e e e |




Infrared singularity:
Model spectral density with infrared singularity added:

27TCL)O_ (a+28+1)

w) = w(w? —w??, |w| <wy, « —1.
) = Gy g s < s 1 @)

Associated Ag-sequence [Magnus 1985]:

dwik(k + B)
Ak +28+a—1)(4k+28+a+1)
Agers = W2k +a+1)(2k+28+a+1) ‘
(4k + 28+ o+ 1)(4k + 28 + a + 3)

Agy =

Asymptotic expansion:

o — 452 —1)ra o
V= g 1 - (g 4 IR0 ]

Graphical representations for two cases [Viswanath and Miiller 1994]:

A
k; a=1, =1

\ |* ‘
)

()

2 |
“0/ 41 \\ // \\‘ /’\/’\/K.ﬂn} bAt.V{ ‘
|y ‘

[
|
a=-1/2, B=0 )

¢, (@)

Signature of divergent infrared singularity (o < 0): the Aggy; converge from
below and the Ay from above toward the same limit.



Bandwith and Gap in Spectral Density oy

Consider a model Ag-sequence that is periodic with period two:
A21~c—1 = Aoa AQk = Aea k= L2,...

Relaxation function with this genetic code:

1
co(z) =
A,
2t —
z 4+ Agco(2)
(Ao - Ae)2 A0 - Ae
= 2 e =, T2 €
A, \/2(A0+Ae)+z + = z ~

Spectral density has bounded support and gap:

1

Op(w) = Ke\/2(AO +A,) —w?—

- (18 = A — (8 — A)|6(w)

wmin:’\/Ao_\/Aey wmax:‘\/Ao—i_\/Ae

Graphical representation for two cases [Viswanath and Miiller 1994]:

(Ao - AE)Q

w2

:
|

|

|

|

|

|

|

|

|

| |

|

|

|

|

|

|

|

|

| /
|

| [
|

|

|

|

| |
| |
i :
|

|

|

|

|

|
e

|
e
o
€
€

€

e A, > A, continuum only (solid lines).

e A, < A.: continuum plus central d-peak (dashed lines).

0(|w| - wmm)H(wmaX - |w|)

(3)



Spectral Densities with Unbounded Support ...

Spectral densities with unbounded support are encoded by Ag-sequences that
grow to infinity as k — oo. The growth law of the Ajg-sequence determines
the high-frequency decay law of the spectral density [Magnus 1985]:

A~k = Op(w) ~exp (—w??). (1)

Model spectral density with Gaussian decay and infrared singularity:

67

2 e~ /o)?, 2)

~wol((a+1)/2)

w

(I)(] (CL))

Wo

Associated Ag-sequence has linear growth law. The intercept of the Agy,_q is
governed by the exponent of the infrared singularity.

1 1
AQk_l = 5&}3(2/{3 -1+ a), Agk = 5&)(2)(2]6) (3)

Graphical representations for two cases [Viswanath and Miiller 1994]:

A

k ’ Akg // //1
| /// »
) /‘ ///
// 7
{ P
| " e |
) |«
[ 4
] ‘ ‘ a=2
= !
2 |
o |
o

Model spectral density with Aj-sequence of different growth laws:

S DAL + o+ 2k)/2)

21/ (Awo) B
2% = Wy F()\(l—i—oz)/?) 5

I'(Aa+1)/2)

a
w

(I)O(W) — —|w/w0|2/)\’

Wo

where the A; must be determined numerically from the moment M, as
described in [nln85].



Unbounded Support and Gap e

The presence of a gap in spectral densities with unbounded support is en-
coded in sequences of Ay,_1 and Ay, that have the same growth-law exponent
A but grow with different (asymptotic) amplitudes.

Model spectral density with Gaussian decay and a gap:
2
Bp(w) = 27 Ad(w) + w—ﬁu — A)B(|w| — Q) e Iel=V7/et, (1)
0

Frequency moments:

k
My, =27(1— A) Y ( 22:1 ) wEm Q=M= (9, — 1)1

1
+2y/m(1—A) ) ( 273’1 . ) QAr=m=L 2l =1,2,... (2)

m=0

with the Ay to be determined from the My, as described in [nln85].

Graphical representations for two cases [Viswanath and Miiller 1994]:

In the cases shown the asymptotics set in early.

o A =0: Ayq grow more steeply: spectral density consists of continuum
split by gap alone.

o A= %: Aogpiq grow less steeply: spectral density consists of continuum
split by gap and a central spectral line.
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