[pex59] Lamellar spacing in micro-phase-separated diblock polymer melt

Consider a diblock copolymer with degree of polymerization N and monomeric length a in a lamellar micro-phase-separated state. The size d of the lamellar spacing is governed by two free-energy contributions (per polymer): $\Delta \bar{F} = \Delta \bar{F}_{str} + \Delta \bar{F}_{int}$. Determine both contributions and then calculate the dependence of d on T and on N from the extremum condition applied to $\Delta \bar{F}$.

(i) The first contribution is entropic in nature, $\Delta \bar{F}_{str} = -T\Delta \bar{S}$, due to the stretching of a polymer segment from a random-walk coil conformation into a straightened out segment. Use the Gaussian probability distribution of mean-square end-to-end distances predicted by the FJC model: $P \sim \exp(-d^2/Na^2)$ and the relation $\Delta \bar{S} \sim k_{\rm B} \ln P$.

(ii) The second contribution is enthalpic in nature, $\Delta \bar{F}_{int} = \Delta \bar{H}$, representing the interfacial energy. Assume that the interfacial energy density (energy per area) γ is given. The total interfacial area is inversely proportional to the lamellar spacing. Therefore, we can write $\Delta \tilde{F}_{int} \sim \gamma/d$ for the free energy per volume. This relation must be converted into $\Delta \bar{F}_{int}$ (per polymer) by using the following dependence of the volume on the number $N_{\rm p}$ of polymers: $V = N_{\rm p}Na^3$, assuming that monomers are compact.

Solution: