[pex29] Kuhn segment length of ideal polymer chain

Flexibility is an intrinsic property of polymers. Consider an ideal polymer chain with N links of length a. Its contour length is L = Na. If we divide that chain into segments of length $l \ge a$ then, with growing size of these segments, the joints become effectively less constrained and less stiff. At the Kuhn segment length $l_{\rm K}$ the joints become effectively free. The mean-square distance of a freely-jointed chain (FJC) is $\langle R^2 \rangle = Na^2 = La$ [pln50]. The natural definition of the Kuhn segment length, therefore, is [pln51]

$$l_{\rm K} \doteq \frac{\langle R^2 \rangle}{L}.$$

The Kuhn segment length $l_{\rm K}$ is a measure for the stiffness of the polymer chain just as the persistence length $l_{\rm p}$ investigated in [pex28] is. However, the two measures are not identical. The Kuhn segment length is easier to determine experimentally and theoretically but the persistence length has a more direct physical meaning. Here we explore the functional relation between $l_{\rm K}$ and $l_{\rm p}$ for an ideal polymer chain with persistent flexibility. On a mesoscopic scale we describe the conformation of the polymer by a vector function $\vec{r}(s)$ and replace the local bond vector \vec{a}_i by the vector function $\vec{u}(s) = d\vec{r}/ds$ with s as defined in [pex28]. The end-to-end distance vector and its mean-square value can thus be expressed as follows:

$$\vec{R} = \int_0^L ds \, \vec{u}(s), \quad \langle R^2 \rangle = \int_0^L ds \int_0^L ds' \langle \vec{u}(s) \cdot \vec{u}(s') \rangle.$$

To calculate the latter we infer from [pex28] the relation

$$\langle \vec{u}(s) \cdot \vec{u}(s') \rangle = \langle \cos \theta(s-s') \rangle = e^{-|s-s'|/l_{\rm p}}.$$

Perform the double integral to obtain an analytic expression of the scaled Kuhn segment length $l_{\rm K}/L$ as a function of the scaled persistence length $l_{\rm p}/L$. Show in particular that for very long polymers $(L \gg \tilde{l})$, we have $l_{\rm K} \simeq 2l_{\rm p}$ and for very short polymers $(L \ll l_{\rm p})$ we have $l_{\rm K} \simeq L$. Plot $l_{\rm K}/L$ versus $l_{\rm p}/L$ over the range $0 < l_{\rm p}/L < 3$ to illustrate this behavior.

[adapted from Grosberg and Khokhlov 1994]

Solution: