[pex25] Ionized colloidal surface: diffuse layer of counter-ions and co-ions

Consider a flat, positively charged colloidal surface. The liquid dispersion medium is an electrolyte,
containing equal average number densities, ng, of positively charge co-ion and negatively charged
counter-ions. The electric field outside the colloid (at x > 0) will be screened by a differential,
n_(z) —n4(z) > 0, in the density of counter-ions over the density of co-ions. The thermodynamic
equilibrium state thus stabilized by the electrostatic forces between the colloidal surface and the
mobile ions in the dispersion medium is governed by the Poisson equation,
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where 9 (z) is the electrostatic potential, € = €,.¢g is the permittivity of the liquid,
p(x) = q[n4(z) — n_(2)],

is the charge density with empirical constant q. The number densities, in turn, depend on the
potential via the familiar Boltzmann exponentials,
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(a) Show that the electrostatic potential thus satisfies the differential equation,
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Introduce scaled quantities ¥ (Z) = 9(x) /1o, = x/xp, to infer the universal (i.e. non-parametric)
differential equation, 1" = sinh(s)), for the function (Z). Identify ¢y and zp in terms of
q,no, €, kgT. The characteristic length scale xp is known as the Debye screening length.

(b) Search for a numerical solution () with boundary value 1(0) = 1 that is monotonically
decreasing and approaches 1)(co) = 0. Plot that solution for 0 < Z < 5. In a separate panel, plot
scaled versions of the densities, n4 (), n—(z), and p(z), inferred from that solution.

(c) Compare the numerical solution from (b) with the Debye-Hiickel solution ¢pz (%) = e~ of the
linearized differential equation. Plot ¢py (%) — (%) for 0 < # < 5. Comment on your findings.

Solution:



