[pex14] Polymer gel free-energy density of mixing

A dry gel of volume fraction ϕ_0 and volume $V_{\rm g}$ swells, when immersed in a solvent, to volume $V_{\rm g}\lambda_1\lambda_2\lambda_3$. Hence its volume fraction decreases to the value $\phi=\phi_0/\lambda_1\lambda_2\lambda_3$. From [pln47] we pull the expression for the free-energy density of a polymers solution and set $N\to\infty$ in the first term on account of the cross-linking, yielding the expression

$$f_{\rm sol}(\phi) = \frac{k_{\rm B}T}{v_{\rm c}} [(1-\phi)\ln(1-\phi) + \chi\phi(1-\phi)].$$

From these ingredients derive the following expression for the free-energy density of mixing:

$$f_{\text{mix}}(\lambda_1, \lambda_2, \lambda_3) = \frac{\phi_0}{\phi} \left[f_{\text{sol}}(\phi) - f_{\text{sol}}(0) \right] - \left[f_{\text{sol}}(\phi_0) - f_{\text{sol}}(0) \right] \rightsquigarrow \frac{\phi_0}{\phi} f_{\text{sol}}(\phi),$$

where the simplified expression to be used in [pln65] disregards terms that are not affected by swelling and uses $f_{sol}(0)$ as a reference value.

[adapted from Doi 2013]

Solution: