[mex19] Hopf bifurcation

A simple Hopf bifurcation generates a limit cycle from a point attractor upon variation of some parameter in the equations of motion of a dynamical system. Consider the dynamical system specified (in polar coordinates) by

 $\dot{r} = -\Gamma r - r^3, \qquad \dot{\theta} = \omega,$

where Γ and ω are constants.

(a) Find the exact solution r(t), $\theta(t)$ for initial conditions $r(0) = r_0$, $\theta(0) = 0$.

(b) Identify the circular periodic trajectory for $\Gamma<0,$ which plays the role of a limit cycle, and determine its radius.

(c) Determine the nature of the fixed point at r = 0 for $\Gamma > 0$ and $\Gamma < 0$.

(d) Sketch the phase portrait for $\Gamma > 0$ and $\Gamma < 0$.