
Condensation and evaporation [tln32]

Supersaturated gases and superheated liquids owe their metastable existence to the surface tension σ . Consider a liquid droplet in equilibrium with the surrounding vapor, implying $T_l = T_g$, $\mu_l = \mu_g$, and $p_l > p_g$ because of surface tension.

For a vapor bubble surrounded by liquid, the argument proceeds along analogous lines.

Work done if droplet expands or contracts: $\delta W = -p_l dV_l - p_g dV_g + \sigma dA$. Grand potential: $\Omega(T, V, \mu) = -p_l V_l - p_g V_g + \sigma A$.

$$\Rightarrow \ \Omega(T, V, \mu) = -\frac{4\pi}{3}R^3p_l - \left(V_{tot} - \frac{4\pi}{3}R^3\right)p_g + 4\pi R^2\sigma.$$

Equilibrium condition: $(\partial\Omega/\partial R)_{T,V,\mu} = 0 \Rightarrow 4\pi R^2 (p_g - p_l) + 8\pi R\sigma = 0.$ Excess pressure in droplet: $p_l - p_g = 2\sigma/R.$ Gibbs-Duhem equations (with dT = 0), $N_l d\mu_l = V_l dp_l$, $N_g d\mu_g = V_g dp_g.$ Chemical equilibrium: $d\mu_l = d\mu_g \Rightarrow (V_l/N_l) dp_l = (V_g/N_g) dp_g.$ Differential excess pressure: $d(p_l - p_g) = \frac{V_g/N_g - V_l/N_l}{V_l/N_l} dp_g = d\left(\frac{2\sigma}{R}\right).$ Use $\frac{V_g}{N_g} \gg \frac{N_l}{V_l}, \ \frac{V_g}{N_g} \simeq \frac{k_B T}{p_g} \Rightarrow \frac{k_b T/p_g}{V_l/N_l} dp_g = d\left(\frac{2\sigma}{R}\right).$ Integrate $\frac{dp_g}{p_g} = \frac{V_l}{N_l k_B T} d\left(\frac{2\sigma}{R}\right)$ from ∞ to R. $\Rightarrow \ln \frac{p_g(R)}{p_g(\infty)} = \frac{2\sigma V_l}{RN_l k_B T} = \frac{2\sigma m}{R\rho_l k_B T} \Rightarrow p_g(R) = p_g(\infty) \exp\left(\frac{2\sigma m}{R\rho_l k_B T}\right).$ Only liquid droplets of a particular radius R_c coexist with the supersaturated

Only liquid droplets of a particular radius R_c coexist with the supersaturated gas phase. Droplets with $R < R_c$ will shrink. Droplets with $R > R_c$ will grow. Hence the condensation process at pressure $p = p_g(R_c)$ can be initiated by the presence of droplets with radius $R > R_c$.

Metastability depends on the absence of droplets with radius $R > R_c$. The boundary of the metastable region (spinodal line) corresponds to a value of R_c comparable to the molecular radius. Supersaturation cannot be pushed beyond that point.