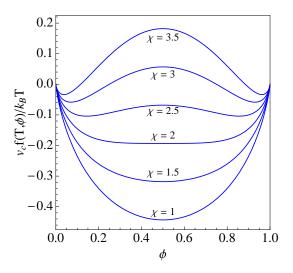
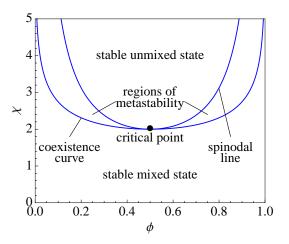
Mixing-Unmixing Transition [psl4]

Helmholtz free energy density (scaled) versus volume fraction ϕ for selected values of interaction parameter χ :



- $\chi \leq 2$: convex function with zero slope at $\phi = \frac{1}{2}$,
- $\chi = 2$: zero curvature at $\phi = \frac{1}{2}$ in addition to zero slope,
- $\chi > 2$: concave portion centered at $\phi = \frac{1}{2}$ gradually grows.

Phase diagram in the (ϕ, χ) -plane:



Critical point: Lowest value of χ for which phase separation exists.

- \triangleright Criterion: $f'(\phi) = f''(\phi) = 0.$
- \triangleright Solution: $\phi_{c} = \frac{1}{2}, \chi_{c} = 2.$

Spinodal line: Boundary of region of stable phase-separated states.

- \triangleright Criterion: $f''(\phi) = 0$ at $\phi \neq \frac{1}{2}$ (inflection points).
- \triangleright Solution: $\chi_{\rm sp} = \frac{1}{2\phi(1-\phi)}$ [pex47].

Coexistence line: Boundary of region of stable mixed states.

$$\triangleright \text{ Criterion: } f'(\phi) = 0 \text{ at } \phi \neq \frac{1}{2} \text{ (local minima)}$$
$$\triangleright \text{ Solution: } \chi_{co} = \frac{1}{1 - 2\phi} \ln \frac{1 - \phi}{\phi} \quad \text{[pex47]}.$$

Osmotic pressure:

General expression from [pln28]:

$$\pi(T,\phi) = -f(T,\phi) + \phi f'(T,\phi) + f(T,0).$$

Prediction of mean-field model [pex48]:

$$\pi(T,\phi) = \frac{k_{\rm B}T}{v_{\rm c}} \left[-\ln(1-\phi) - \chi\phi^2 \right] \stackrel{\phi \ll 1}{\leadsto} \frac{k_{\rm B}T}{v_{\rm c}} \left[\phi + \left(\frac{1}{2} - \chi\right)\phi^2 \right].$$

Interpretation of last expression:

- \triangleright First term represents van't Hoff osmotic pressure,
- ▷ Second term with 2^{nd} virial coefficient $A_2 = \frac{1}{2} \chi$ represents correction with opposite trends due to hardcore repulsion $(\frac{1}{2})$ and nearest-neighbor coupling (χ) .

Stability criterion for osmotic pressure: $\pi'(T, \phi) > 0$.

- $\triangleright \chi < \chi_c$: π is stable for exactly one value of ϕ ,
- $\triangleright \chi > \chi_c$: π is stable for two distinct values of ϕ .

[extracted in part from Doi 2013]