Dimensionless Parameters in Rheology [pln91]

 \Box Deborah number: $De = \frac{\tau}{\tau_f}$

- τ : stress relaxation time
- $\tau_{\rm f}$: time scale of experiment
- $De \ll 1$: liquid-like soft-matter response
- De $\gg 1$: solid-like soft-matter response

\Box Weissenberg number: Wi = $\dot{e} \tau$

- τ : stress relaxation time
- \dot{e} : rate of shear strain
- Wi $\ll 1$: linear soft-matter response
- Wi $\gg 1$: nonlinear soft-matter response

 \Box Peclet number: Pe = $\dot{e} \tau_{\rm D} = \frac{\dot{e}}{\dot{e}_{\rm D}}$

- $\tau_{\rm D}$: diffusive relaxation time
- \dot{e} : advective transport rate (rate of shear strain)
- $e_{\rm D}$: diffusive transport rate
- $Pe \ll 1$: soft matter maintains structure during shear flow
- $Pe \gg 1$: shear flow modifies structure of soft matter