
Fundamental Equations of Microfluidics II [pln86]

Momentum flux:

Momentum inside Ω: Pi(Ω, t) =

∫
Ω

dr ρ(r, t)vi(r, t)︸ ︷︷ ︸
Ji(r,t)

.

Rate of momentum change:
∂

∂t
Pi(Ω, t) =

∫
Ω

dr

[(
∂

∂t
ρ

)
vi + ρ

∂

∂t
vi

]
.

Momentum flux density tensor: Πij = pδij + Π′ij, Π′ij = ρvivj.

Stress tensor:1 σij = −pδij + σ′ij.

Agents of momentum change:

• convection of momentum,

• contact forces: pressure, viscosity,

• body forces: gravitational, electric, magnetic.

Convection of momentum:2

∂

∂t
Pi(Ω, t)conv = −

∫
∂Ω

dan ·
(
ρviv

)
= −

∫
∂Ω

da njρvivj.

Momentum change due to pressure force, −pnda, on surface element:

∂

∂t
Pi(Ω, t)pres = −

∫
∂Ω

dan ·
(
pei
)

= −
∫
∂Ω

da njpδij.

Momentum change due to viscous force, σ′ijnjda, on surface element:

∂

∂t
Pi(Ω, t)visc =

∫
∂Ω

da njσ
′
ij.

Viscous stress tensor

• has linear dependence on velocity,

• is symmetric.

1The second term, σ′ij , is named viscous stress tensor.
2Summation over repeated indices implied from here on.



Viscous stress tensor related to material parameters:

σ′ij = η

zero trace tensor︷ ︸︸ ︷(
∂vi
∂rj

+
∂vj
∂rj
− 2

3
δij
∂vk
∂rk

)
+ζ δij

∂vk
∂rk

= η

(
∂vi
∂rj

+
∂vj
∂rj

)
+

(
ζ − 2

3
η

)
︸ ︷︷ ︸

(β−1)η

δij
∂vk
∂rk

.

• η: dynamic viscosity (due to shear stress),

• ζ: second viscosity (due to compression),

• β = ζ/η + 1/3.

Incompressible fluid:
∂vk
∂rk

= 0 ⇒ σij = η

(
∂vi
∂rj

+
∂vj
∂ri

)
.

Momentum change due to (gravitational and electric) body forces:

∂

∂t
Pi(Ω, t)body =

∫
Ω

dr
(
ρg + ρelE

)
i
,

• ρ: mass density,

• ρel: charge density,

• g: gravitational field,

• E: electric field.

Convert surface integral into volume integrals via Gauss’s theorem:∫
∂Ω

da nj
[
− ρvivj − pδij + σ′ij

]
=

∫
Ω

dr

[
−∂(ρvivj)

∂rj
− ∂(pδij)

∂rj
+
∂σ′ij
∂rj

]
.

Resulting partial differential equation:(
∂

∂t
ρ

)
vi + ρ

∂

∂t
vi = −∂(ρvivj)

∂rj︸ ︷︷ ︸
#

+
∂σij
∂rj

+ ρgi + ρelEi.

Expand and use continuity eq.: # = −∂(ρvj)

∂rj
− ρvj

∂vi
∂rj

=
∂ρ

∂t
vi − ρvj

∂vi
∂rj

.

Equation of motion (with inertial terms on left and force terms on right):

ρ

[
∂vi
∂t

+ vj
∂vi
∂rj

]
=
∂σij
∂rj

+ ρgi + ρelEi.
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Divergence of stress tensor if η = const and ζ = const [pex61]:

∂σij
∂rj

= − ∂p
∂ri

+ η
∂2vi
∂r2

j

+ βη
∂

∂ri

(
∂vj
∂rj

)
.

Navier-Stokes equation (in two distinct notations):

ρ

[
∂vi
∂t

+ vj
∂vi
∂rj

]
= − ∂p

∂ri
+ η

∂2vi
∂r2

j

+ βη
∂

∂ri

(
∂vj
∂rj

)
+ ρgi + ρelEi,

ρ

[
∂v

∂t
+
(
v · ∇

)
v

]
= −∇p+ η∇2v + βη∇

(
∇ · v

)
+ ρg + ρelE.

B Complexity in fluid dynamics is caused by nonlinearity (second term
on the left). In microfluidics flow velocities are, in general, low. This
is called Stokes flow or creeping flow. The nonlinear term is commonly
neglected.

B For incompressible fluids the third term on the right vanishes.

Introduce scaled variables �̂
.
= �/�0 with reference values,

• L0: characteristic length scale,

• V0: characteristic velocity scale,

• T0 = L0/V0: characteristic time scale,

• P0 = ηV0/L0: characteristic pressure scale.

Scaled Navier-Stokes equation for incompressible fluid and without body
forces [pex62],

Re

[
∂

∂t̂
v̂ +

(
v̂ · ∇̂

)
v̂

]
= −∇̂p̂+ ∇̂2v̂,

then depends on a single parameter, the Reynolds number,

Re
.
=
ρV0L0

η
.

B Re� 1: inertia is dominant (nonlinearity is important),

B Re� 1: viscosity is dominant (nonlinearity is negligible).

Stokes flow for Re� 1 described by (linear) Stokes equation,

ρ
∂v

∂t
= −∇p+ η∇2v.

In steady-state flow, the left-hand side vanishes.
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Stokes flow analyzed by pressure p and vorticity ~ω
.
= ∇× v:

∇2p = 0,
∂

∂t
~ω =

η

ρ
∇2~ω.

A central topic in rheology of non-Newtonian fluids are shear thinning and
shear thickening (see [pln22]):

B shear thinning : deformable molecules are being stretched out under
shear stress and thus lower the viscosity;

B shear thickening : strongly interacting particles tend to impede flow
under increasing shear stress and thus raise the viscosity.

Empirical constitutive expressions for the viscosity describing these effects
are based on scalar invariants (trace, magnitude) of the shear stress tensor:3

γ̇ij
.
=
∂vj
∂ri

+
∂vi
∂rj

.

Viscous stress tensor for empirical models with incompressibility implied:

σ′ij = η
(
|γ̇|
)
γ̇ij.

B Carreau-Yasuda model (five parameters):

η
(
|γ̇|
)

= η∞ + (η0 − η∞)
[
1 + (λ|γ̇|)a

](n−1)/a
,

– η0: zero-shear-stress viscosity (see [pln52]),

– η∞: infinite-shear-stress viscosity,

– λ: time scale,

– a, n: control of slop and curvature.

B Ostwald-deWele model (two parameters):4

η
(
|γ̇|
)

= m|γ̇|n−1,

– n < 1: shear thinning,

– n > 1: shear thickening.

[extracted from Bruus 2008]

3The trace, γ̇ii = 2∇ · v, vanishes for incompressible fluids.
4Limiting case of C.-Y. model: (λ|γ̇|)a � 1, η∞ = 0, η0λ

n−1 = m.
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