Fundamental Equations of Microfluidics I [pl

Gauss's theorem for generic vector field $\mathbf{V}(\mathbf{r},t)$:

$$\int_{\Omega} d\mathbf{r} \, \nabla \cdot \mathbf{V}(\mathbf{r}, t) = \int_{\partial \Omega} da \, \mathbf{n} \cdot \mathbf{V}(\mathbf{r}, t).$$

- $d\mathbf{r} \doteq d^3r$: volume element,
- da: element of surface area,
- Ω : compact region of volume,
- $\partial\Omega$: surface of that region,
- n: surface normal (pointing outward).

Characterization of the flow of a fluid (in general, compressible) by flux densities of mass, momentum, and energy.

Mass flux:

- mass density: $\rho(\mathbf{r}, t)$,
- total mass inside Ω : $M(\Omega, t) = \int_{\Omega} d\mathbf{r} \, \rho(\mathbf{r}, t)$,
- velocity field: $\mathbf{v}(\mathbf{r}, t)$,
- mass current (momentum) density: $\mathbf{J}(\mathbf{r},t) \doteq \rho(\mathbf{r},t)\mathbf{v}(\mathbf{r},t)$.

Change of of mass inside Ω related to mass flux through $\partial\Omega$:

$$\frac{\partial}{\partial t} M(\Omega,t) = \int_{\Omega} d\mathbf{r} \, \frac{\partial}{\partial t} \, \rho(\mathbf{r},t) = - \int_{\partial \Omega} da \, \mathbf{n} \cdot \mathbf{J}(\mathbf{r},t) = - \int_{\Omega} d\mathbf{r} \, \nabla \cdot \mathbf{J}(\mathbf{r},t).$$

Local relation between mass density and mass current density implied:

$$\frac{\partial}{\partial t} \rho(\mathbf{r}, t) = -\nabla \cdot \mathbf{J}(\mathbf{r}, t) \qquad \text{(continuity equation)},$$

- incompressible-fluid case: $\nabla \cdot \mathbf{v}(\mathbf{r}, t) = 0$,
- tensor notation: $\nabla \cdot \mathbf{J}(\mathbf{r}, t) = \sum_{i=x,y,z} \frac{\partial}{\partial r_i} J_i$.

[extracted from Bruus 2008]

¹Applicable if flow velocity is small compared of speed of sound.