Maier-Saupe Theory for Nematic Ordering

Consider rod-like molecules with indistinguishable ends! at fixed concentra-
tion in solution. The nematic phase is isotropic in the plane perpendicular
to the director.

The orientations of individual molecules relative to the director n of nematic
ordering is described by a distribution f(6), named orientation function. The
normalization condition under the circumstances described is
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In the isotropic liquid phase, one end of each rod is equally likely to point in
any direction on a hemisphere: fis,(6) = 1/2m = const.

The nematic order parameter,
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is sensitive to any deviation of f(0) from fis,(f) that reflects an alignment
tendency of the rods.

The agents of nematic ordering are, in parts, enthalpic and entropic in nature:

e attractive van der Waals forces favor alignment,

e aligned rods are more loosely packed, i.e. less constrained in positioning
and motion.

The equilibrium macrostate is the state of lowest free energy, here expressed
relative to the isotropic state:

AF = AH — TAS. (3)

The enthalpy change in mean-field approximation is rendered as the following
function of the order parameter:

AH = —%u/\ﬂ, (4)

where u is a measure for the coupling strength of the van der Waals attraction.

!The molecules are assumed to be symmetric when rotated 180° perpendicular to their
long axis.



The entropy reduction relative to the (most disordered) isotropic macrostate
depends on the orientation function as follows:
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The Maier-Saupe theory extracts a one-parameter orientation function from
the variational problem that extremizes the following functional with two
Lagrange multipliers:

J[f] = AS + MN + A M. (6)
The solution of this variational problem,

f(6,b) = A(b) exp (bcos* ), (7)
is worked out in [pex43| including an analytic expression for the amplitude

function A(b).

The Maier-Saupe theory for the thermotropic transition between an isotropic
liquid and nematic phase thus expresses the scaled free energy, AF' = AF/kgT,
as a function of the parameter b and the scaled coupling constant @ = u/kgT"

AF(b, 1) = —=a[N(b)]* — AS(b), (8)

where AS = AS /kg is a dimensionless entropy.

Plotting AF(b, @) versus N(b) at fixed @, as worked out in [pex44], reveals
the nature of the equilibrium state: for weak coupling (or high temperature)
the minimum free energy is realized for vanishing order parameter.

There exists a critical coupling strength . or a transition temperature T. =
1/4., where the location of that minimum switches to a location at nonzero
order parameter.

The location of the free-energy minimum determines a function A/ (T), which
gradually decreases as T increases from zero and then drops to zero at 1.
in a first-order phase transition. This function and the transition point are
worked out quantitatively in [pex5].
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