
Maier-Saupe Theory for Nematic Ordering [pln74]

Consider rod-like molecules with indistinguishable ends1 at fixed concentra-
tion in solution. The nematic phase is isotropic in the plane perpendicular
to the director.

The orientations of individual molecules relative to the director n of nematic
ordering is described by a distribution f(θ), named orientation function. The
normalization condition under the circumstances described is

M = 2π

∫ π/2

0

dθ sin θ f(θ) = 1. (1)

In the isotropic liquid phase, one end of each rod is equally likely to point in
any direction on a hemisphere: fiso(θ) = 1/2π = const.

The nematic order parameter,

N =
1

2
〈3 cos2 θ − 1〉 = π

∫ π/2

0

dθ sin θ (3 cos2 θ − 1)f(θ), (2)

is sensitive to any deviation of f(θ) from fiso(θ) that reflects an alignment
tendency of the rods.

The agents of nematic ordering are, in parts, enthalpic and entropic in nature:

• attractive van der Waals forces favor alignment,

• aligned rods are more loosely packed, i.e. less constrained in positioning
and motion.

The equilibrium macrostate is the state of lowest free energy, here expressed
relative to the isotropic state:

∆F = ∆H − T∆S. (3)

The enthalpy change in mean-field approximation is rendered as the following
function of the order parameter:

∆H = −1

2
uN 2, (4)

where u is a measure for the coupling strength of the van der Waals attraction.

1The molecules are assumed to be symmetric when rotated 180◦ perpendicular to their
long axis.



The entropy reduction relative to the (most disordered) isotropic macrostate
depends on the orientation function as follows:

∆S = −kB 2π

∫ π/2

0

dθ sin θ

[
f(θ) ln f(θ)− 1

2π
ln

(
1

2π

)]
= −kB

∫ π/2

0

dθ sin θ [2πf(θ)] ln
(
2πf(θ)

)
. (5)

The Maier-Saupe theory extracts a one-parameter orientation function from
the variational problem that extremizes the following functional with two
Lagrange multipliers:

J [f ] = ∆S + λ1N + λ2M. (6)

The solution of this variational problem,

f(θ, b) = A(b) exp
(
b cos2 θ

)
, (7)

is worked out in [pex43] including an analytic expression for the amplitude
function A(b).

The Maier-Saupe theory for the thermotropic transition between an isotropic
liquid and nematic phase thus expresses the scaled free energy, ∆F̂

.
= ∆F/kBT ,

as a function of the parameter b and the scaled coupling constant û
.
= u/kBT :

∆F̂ (b, û) = −1

2
û[N (b)]2 −∆Ŝ(b), (8)

where ∆Ŝ = ∆S/kB is a dimensionless entropy.

Plotting ∆F̂ (b, û) versus N (b) at fixed û, as worked out in [pex44], reveals
the nature of the equilibrium state: for weak coupling (or high temperature)
the minimum free energy is realized for vanishing order parameter.

There exists a critical coupling strength ûc or a transition temperature T̂c
.
=

1/ûc, where the location of that minimum switches to a location at nonzero
order parameter.

The location of the free-energy minimum determines a function N̄ (T̂ ), which
gradually decreases as T̂ increases from zero and then drops to zero at T̂c
in a first-order phase transition. This function and the transition point are
worked out quantitatively in [pex5].

[adapted from Jones 2002]
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