Elastic Energy of Deformation [pln63]

Within a continuum description of elastic material calculate

- the deformation free-energy density $f(\mathbf{r})$,
- the deformation free energy $F = \int d^3r f(\mathbf{r})$.

We consider three successive stages of generality.

1. Orthogonal deformation

Pure extension or compression in three orthogonal directions, expressed locally as follows:

$$r'_x = \lambda_1 r_x, \quad r'_y = \lambda_2 r_y, \quad r'_z = \lambda_3 r_z.$$

 $\Rightarrow f = f(\lambda_1, \lambda_2, \lambda_3), \quad \text{independent of position } \mathbf{r}.$

2. Uniform deformation

Linear transformation, expressed locally by deformation gradient tensor **E** as follows:

$$\mathbf{r}' = \mathbf{E} \cdot \mathbf{r}$$
 or $r'_{\alpha} = \sum_{\beta} E_{\alpha\beta} r_{\beta}$, where $E_{\alpha\beta} = \frac{\partial r'_{\alpha}}{\partial r_{\beta}}$.

Convenient representation:¹ $\mathbf{E} = \mathbf{Q} \cdot \mathbf{L}$, where

- $\sum_{\gamma} Q_{\alpha\gamma} Q_{\beta\gamma} = \delta_{\alpha\beta}$ (orthogonal tensor),
- $L_{\alpha\beta} = \lambda_{\alpha} \delta_{\alpha\beta}$ (diagonal tensor),
- $det(\mathbf{E}) = \lambda_1 \lambda_2 \lambda_3$ (determinant of **E**),
- $\sum_{\alpha\beta} E_{\alpha\beta}^2 = \sum_{\alpha} B_{\alpha\alpha} = \sum_{\alpha} \lambda_{\alpha}^2$ (trace of $\mathbf{E} \cdot \mathbf{E}^t$).

 $\Rightarrow f = f(\lambda_1, \lambda_2, \lambda_3),$ still independent of position **r**.

3. General deformation

Local deformation assumed to be uniform.

$$\Rightarrow F = \int d^3r f(\mathbf{E}(\mathbf{r})).$$

Equilibrium deformation from minimization of F for given boundary conditions.

¹Symmetric tensor $\mathbf{B} \doteq \mathbf{E} \cdot \mathbf{E}^t$ is diagonalized by orthogonal tensor \mathbf{Q} : $\mathbf{Q}^t \cdot \mathbf{B} \cdot \mathbf{Q} = \mathbf{L}^2$. It follows that $\mathbf{E} \cdot \mathbf{E}^t = \mathbf{B} = (\mathbf{Q} \cdot \mathbf{L}) \cdot (\mathbf{L} \cdot \mathbf{Q}^t)$.

General expression for deformation energy density:

$$f(\mathbf{E}) \propto \operatorname{Tr}(\mathbf{E} \cdot \mathbf{E}^t - 3).$$

Consider two principal types of deformation:

• shear deformation:

$$\mathbf{E} = \begin{pmatrix} 1 & \gamma & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \gamma > 0.$$

• uniform swelling:²

$$\mathbf{E} = \begin{pmatrix} \lambda_1 & 0 & 0\\ 0 & \lambda_2 & 0\\ 0 & 0 & \lambda_3 \end{pmatrix}, \quad \lambda_i > 1.$$

• tensile deformation:

$$\mathbf{E} = \begin{pmatrix} \lambda_{\perp}^{-1/2} & 0 & 0\\ 0 & \lambda_{\perp}^{-1/2} & 0\\ 0 & 0 & \lambda_{\parallel} \end{pmatrix},$$

where $\lambda_{\perp} = \lambda_{\parallel}$ means incompressibility.

[in part from Doi 2013]

 $^{^{2}}$ For later applications to gels.