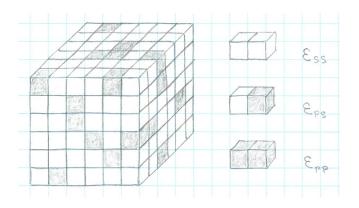
Model Free-Energy Density [pln32]

Lattice-gas model of two-component incompressible fluid with *internal energy* determined in mean-field approximation and *entropy* by maximum randomness in configuration space. The calculation of both ingredients ignores spatial correlations between solute particles (p) and solvent particles (s).

- Number of cells: $N = N_{\rm p} + N_{\rm s} = \phi N + (1 \phi)N.$
- Cell volume: $v_{\rm p} = v_{\rm s} \doteq v_{\rm c}$.
- Total volume: $V = Nv_c$.
- Volume fraction of solute: $\phi = N_{\rm p}/N$.
- Hardcore repulsion implied by single occupancy of all cells.
- VDW attraction via nearest-neighbor cell coupling: $\epsilon_{pp}, \epsilon_{ss}, \epsilon_{ps}$.
- Coordination number: $z \quad (z = 6 \text{ in cubic lattice shown}).$



Statistical mechanical task:

- Energy of microstate: $E_i = N_i^{(\text{pp})} \epsilon_{\text{pp}} + N_i^{(\text{ss})} \epsilon_{\text{ss}} + N_i^{(\text{ps})} \epsilon_{\text{ps}}.$
- Canonical partition function: $Z_N = \sum_i e^{-E_i/k_{\rm B}T}$.
- Helmholtz free energy: $F = -k_{\rm B}T \ln Z_N = U TS$.
- Task here carried out by approximating U and S.

Average numbers of nearest-neighbor pairs (ignoring correlations):

- $\bar{N}_{\rm pp} = \frac{1}{2}N_{\rm p}z\phi = \frac{1}{2}Nz\phi^2$,
- $\bar{N}_{ss} = \frac{1}{2}N_s z(1-\phi) = \frac{1}{2}Nz(1-\phi)^2$,
- $\bar{N}_{ps} = N_p z (1 \phi) = N z \phi (1 \phi).$

Internal energy (relative to unmixed state):

$$U = \frac{1}{2} z N \Big\{ \Big[\epsilon_{\rm pp} \phi^2 + \epsilon_{\rm ss} (1 - \phi)^2 + 2\epsilon_{\rm ps} \phi (1 - \phi) \Big] - \Big[\epsilon_{\rm pp} \phi + \epsilon_{\rm ss} (1 - \phi) \Big] \Big\}$$
$$= -\frac{1}{2} z N \Big[\underbrace{\epsilon_{\rm pp} + \epsilon_{\rm ss} - 2\epsilon_{\rm ps}}_{\Delta \epsilon} \Big] \phi (1 - \phi).$$

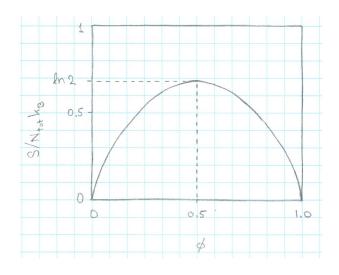
Energetically, $\Delta \epsilon > 0$ favors mixing and $\Delta \epsilon < 0$ favors unmixing.

Multiplicity of microstates: $W = \begin{pmatrix} N \\ N_p \end{pmatrix} = \frac{N!}{N_p!(N - N_p)!}.$ Entropy of mixing (ignoring correlations): $S = k_B \ln W.$

Use Stirling approx., $\ln N! \simeq N \ln N - N$, and volume fraction, $\phi = N_p/N$.

$$S = Nk_{\rm B} \left[\ln N - 1 - \phi \ln N_{\rm p} + \phi - (1 - \phi) \ln(N - N_{\rm p}) + 1 - \phi \right]$$

= $Nk_{\rm B} \left[-\phi \ln \phi - (1 - \phi) \ln(1 - \phi) \right].$



Helmholtz free-energy density, $f(T, \phi) \doteq [U - TS]/V$:

$$f(T,\phi) = \frac{k_{\rm B}T}{v_{\rm c}} \left[\phi \ln \phi + (1-\phi)\ln(1-\phi) + \chi\phi(1-\phi)\right], \quad \chi \doteq -\frac{z}{2k_{\rm B}T}\Delta\epsilon.$$

Typically, $\chi > 0$ is realized. Overall then (energetically and entropically), low χ (high T) favors mixing and high χ (low T) favors unmixing.

[extracted from Doi 2013]