Free Energy of Solutions [pln26]

Two-component incompressible fluid system: solute (p) and solvent (s).

Terms of specification:

- $N_{\rm p}, N_{\rm s}; m_{\rm p}, m_{\rm s}$: numbers and masses of molecules,
- $v_{\rm p}, v_{\rm s}; \ \rho_{\rm p} \doteq m_{\rm p}/v_{\rm p}, \rho_{\rm s} \doteq m_{\rm s}/v_{\rm s}$: specific volumes¹ and mass densities,
- $V = N_{\rm p}v_{\rm p} + N_{\rm s}v_{\rm s}$: volume,
- $c \doteq \frac{N_{\rm p}m_{\rm p}}{V}$: weight concentration of solute,
- $x_m \doteq \frac{N_p}{N_p + N_s}$: molar fraction of solute,
- $\phi_m \doteq \frac{N_{\rm p} m_{\rm p}}{N_{\rm p} m_{\rm p} + N_{\rm s} m_{\rm s}}$: mass fraction of solute,
- $\phi \doteq \frac{N_{\rm p} v_{\rm p}}{N_{\rm p} v_{\rm p} + N_{\rm s} v_{\rm s}} = \frac{N_{\rm p} v_{\rm p}}{V}$: volume fraction of solute.

Relation : $c = \rho_{\rm p} \phi$.

Helmholtz free energy: $F(T, N_p, N_s) = U - TS$,

- \triangleright internal energy U to be constructed from interactions,
- \triangleright entropy S to be derived from combinatorics,
- \triangleright volume V via $N_{\rm p}, N_{\rm s}$ (see above).

Extensivity: $F(T, \alpha N_{p}, \alpha N_{s}) = \alpha F(T, N_{p}, N_{s}).$

Set
$$\alpha = v_{\rm p}/V \Rightarrow F\left(T, \frac{N_{\rm p}v_{\rm p}}{V}, \frac{N_{\rm s}v_{\rm p}}{V}\right) = \frac{v_{\rm p}}{V}F(T, N_{\rm p}, N_{\rm s}).$$

 $\Rightarrow F(T, N_{\rm p}, N_{\rm s}) = \frac{V}{v_{\rm p}}F\left(T, \phi, \frac{v_{\rm p}}{v_{\rm s}}(1-\phi)\right) \doteq Vf(T, \phi).$

Gibbs free energy: $G(T, p, N_p, N_s) = F + pV = V[p + f(T, \phi)].$

The function $f(T, \phi)$ has yet to be determined from molecular interactions and the combinatorics of molecular configurations.

¹In the fluids considered here all volume is taken up by either solute or solvent particles. In gases the specific volume, V/N, is unrelated to the size of the particles.