
Simple model of viscoelasticity [pln23]

Characteristic stress relaxation time τ delimits regimes:

- $t \ll \tau$: solid-like (elastic) response, $\sigma = G_0 e \Rightarrow \frac{e}{\sigma} = G_0^{-1}$,
- $t \gg \tau$: liquid-like (viscous) response, $\sigma = \eta \dot{e} \Rightarrow \frac{e}{\sigma} = \eta^{-1} t$,
- $t \simeq \tau$: crossover behavior

Relation between shear modulus G_0 and viscosity η from graph e/σ vs t:

$$\frac{G_0^{-1}}{\tau} = \eta^{-1} \quad \Rightarrow \ \eta = G_0 \tau.$$

Relaxation is due to thermally activated hopping: $\tau^{-1} = \nu \exp\left(-\frac{\epsilon}{k_{\rm B}T}\right)$

 $\triangleright \epsilon$: energy barrier for hopping,¹

 $\triangleright \nu$: optical phonon frequency.

Arrhenius law:
$$\eta = \frac{G_0}{\nu} \exp\left(\frac{\epsilon}{k_{\rm B}T}\right) \Rightarrow \ln \eta \propto \frac{1}{k_{\rm B}T}$$

Arrhenius law experimentally verified at not too low T.

In a more realistic scenario the viscoeleastic response is described by multiple relaxation times.

¹as derived, for example, from the latent heat of vaporization per molecule.