Nonlinear Viscous Behavior [pln22]

Nonlinear effects of all types as observed in dispersions can be interpreted as a consequence of particle rearrangements in response to flow (see section on colloids).

Shear stress versus strain rate: $\sigma(\dot{e}) = \eta(\dot{e})\dot{e}$.

(i) Newtonian liquid: reference system with $\eta = \text{const.}$

(ii) Shear thinning: paints, yoghurt.

 $\triangleright \text{ Model for polymeric fluids: } \eta(\dot{e}) = \frac{\eta_0}{1 + (\dot{e}/\dot{e}_c)^n},$

 \triangleright material parameters: $\eta_0, \dot{e}_c, n,$

- \triangleright stress relaxation time: $\tau = 1/\dot{e}_{\rm c}$,
- \triangleright fast strain rates, $\dot{e} \simeq \dot{e}_{c}$, prevent polymers from relaxing to equilibrium.

(iv) Bingham fluid: concentrated colloid suspensions.

 \vartriangleright Onset of flow requires threshold shear stress.

