Configurational entropy [pln15]

Statistically interacting particles are free of interaction energies. The energy of any many-body microstate is determined by its particle content $\{N_m\}$.

From the multiplicity of many-body microstates of given particle content $\{N_m\}$ we infer a configurational entropy for macrostates with given average particle content $\{\langle N_m \rangle\}$ [Isakov1994]:

$$S(\{\langle N_m \rangle\}) = k_B \sum_{m} \left[\left(\langle N_m \rangle + Y_m \right) \ln \left(\langle N_m \rangle + Y_m \right) - \langle N_m \rangle \ln \langle N_m \rangle - Y_m \ln Y_m \right],$$
$$Y_m \doteq A_m - \sum_{m'} g_{mm'} \langle N_{m'} \rangle.$$

The function $S(\{\langle N_m \rangle\})$ is independent of the particle energies ϵ_m . However, the particle population average $\langle N_m \rangle$ for each species does, in general, depend on the energies $\epsilon_{m'}$ of particles from all species.

Examples for one species of particles in a system with N_A orbitals. All expressions are entropies per orbital, $\bar{S} \doteq S/N_A$, as functions of population densities, $\langle \bar{N} \rangle \doteq \langle N \rangle/N_A$, in the limit $N_A \to \infty$.

• fermions: $\bar{S}/k_B = -(1 - \langle \bar{N} \rangle) \ln(1 - \langle \bar{N} \rangle) - \langle \bar{N} \rangle \ln(\bar{N})$,

• bosons: $\bar{S}/k_B = (1 + \langle \bar{N} \rangle) \ln (1 + \langle \bar{N} \rangle) - \langle \bar{N} \rangle \ln \langle \bar{N} \rangle$,

• semions: $\bar{S}/k_B = \left(1 + \frac{1}{2}\langle \bar{N} \rangle\right) \ln\left(1 + \frac{1}{2}\langle \bar{N} \rangle\right) - \langle \bar{N} \rangle \ln\langle \bar{N} \rangle$ $-\left(1 - \frac{1}{2}\langle \bar{N} \rangle\right) \ln\left(1 - \frac{1}{2}\langle \bar{N} \rangle\right),$

