Dissipative Dynamical Systems [mln101]

Nature of phase flow:

- *Conservative systems*: Incompressible flow (Liouville theorem). Hamiltonian systems have even phase-space dimensionality.
- *Dissipative systems*: Progressive contraction of phase flow to some attractor. Phenomenological character of equations of motion allow for odd dimensionalities.

2D dissipative flow: Two kinds of attractors.

- Point attractors $(2D \rightarrow 0D)$ [mln73] [msl10].
- Limit cycles $(2D \rightarrow 1D)$ [mln74].

3D dissipative flow: Four kinds of attractors.

- Point attractors $(3D \rightarrow 0D)$ [msl16].
- Limit cycles $(3D \rightarrow 1D)$ [msl17].
- Toroidal attractors $(3D \rightarrow 2D)$ [msl18].
- Strange attractors $(3D \rightarrow \text{fract.D})$ [msl19].

Rössler band: Example of strange attractor.

• Equations of motion: y = 1

 $\dot{x} = -y - z, \quad \dot{y} = x + \frac{y}{5}, \quad \dot{z} = \frac{1}{5} + z(x - 5.7).$

• Flow on attractor: stretching, folding, and squeezing.