[tex97] BE gas in \mathcal{D} dimensions IV: heat capacity at high temperature

The internal energy of the ideal Bose-Einstein gas in \mathcal{D} dimensions and at $T \geq T_c$ is given by the following expression:

$$U = \mathcal{N}k_B T \frac{\mathcal{D}}{2} \frac{g_{\mathcal{D}/2+1}(z)}{g_{\mathcal{D}/2}(z)}.$$

Use this result to derive the following expression for the heat capacity $C_V = (\partial U/\partial T)_{VN}$:

$$\frac{C_V}{\mathcal{N}k_B} = \left(\frac{\mathcal{D}}{2} + \frac{\mathcal{D}^2}{4}\right) \frac{g_{\mathcal{D}/2+1}(z)}{g_{\mathcal{D}/2}(z)} - \frac{\mathcal{D}^2}{4} \, \frac{g'_{\mathcal{D}/2+1}(z)}{g'_{\mathcal{D}/2}(z)}.$$

Use the derivative $\partial/\partial T$ of the result $g_{\mathcal{D}/2}(z) = \mathcal{N}\lambda_T^{\mathcal{D}}/V$ with $V = L^{\mathcal{D}}$ to calculate any occurrence of $(\partial z/\partial T)_{V\mathcal{N}}$ in the derivation. Use the recursion relation $zg_n'(z) = g_{n-1}(z)$ for $n \geq 1$ to further simplify the results pertaining to $\mathcal{D} \geq 2$.

Solution: