
[tex12] Mayer's relation for the heat capacities of the classical ideal gas

The amount n=1mol of a classical ideal gas $[pV=nRT, U=C_VT]$ with $C_V=$ const] is initially confined to a volume V_1 at pressure p_1 . In step $1\to 2$ of Mayer's cycle, the gas undergoes free expansion to volume V_2 while it is thermally isolated ($\delta Q=0, \delta W=0$) The pressure decreases from p_1 to p_2 during this step. In step $2\to 3$ the gas is quasi-statically compressed back to volume V_1 , while the pressure is maintained at p_2 . With the temperature decreasing during this step, heat is expelled. In step $3\to 1$ the gas is heated up quasi-statically at constant volume V_1 until the pressure returns to p_1 . Use the first law to derive Mayer's relation, $C_p-C_V=R$, between the heat capacities of the classical ideal gas.

Solution: