Legendre transform [tln77]

Given is a function f(x) with monotonic derivative f'(x). The goal is to replace the independent variable x by p = f'(x) with no loss of information.

Note: The function G(p) = f(x) with p = f'(x) is, in general, not invertible.

The Legendre transform solves this task elegantly.

- Forward direction: g(p) = f(x) xp with p = f'(x).
- Reverse direction: f(x) = g(p) + px with x = -g'(p)

Example 1: $f(x) = x^2 + 1$.

•
$$f(x) = x^2 + 1$$
 \Rightarrow $f'(x) = 2x$ \Rightarrow $x = \frac{p}{2}$ \Rightarrow $g(p) = 1 - \frac{p^2}{4}$.

•
$$g(p) = 1 - \frac{p^2}{4}$$
 \Rightarrow $g'(p) = -\frac{p}{2}$ \Rightarrow $p = 2x$ \Rightarrow $f(x) = x^2 + 1$.

Example 2: $f(x) = e^{2x}$.

•
$$f(x) = e^{2x}$$
 \Rightarrow $f'(x) = 2e^{2x} = p$ \Rightarrow $x = \frac{1}{2} \ln \frac{p}{2}$
 \Rightarrow $g(p) = \frac{p}{2} - \frac{p}{2} \ln \frac{p}{2}$.

$$\bullet \ g(p) = \frac{p}{2} - \frac{p}{2} \ln \frac{p}{2} \quad \Rightarrow \ g'(p) = -\frac{1}{2} \ln \frac{p}{2} = -x$$

$$\Rightarrow \ p = 2e^{2x} \quad \Rightarrow \ f(x) = e^{2x}.$$