Response functions .-

Second partial derivatives of thermodynamic potentials with respect to nat-
ural independent variables. Response functions describe how one thermo-
dynamic function responds to a change of another thermodynamic function
under controlled conditions. Response functions are important because of
their experimental accessibility. Consider a system with N = const.
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Thermal response functions (heat capacities): C = 5T
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where X =V, M and Y = —p, H.

Equivalent expressions of C'x, Cy are derived from 0Q) = dU — YdX:
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Also, from 6Q) = dE + XdY we infer Cy = oF
or /.

Note that U(T, X) and E(T,Y’) are not thermodynamic potentials.



Mechanical response functions

Isothermal compressibility: rp = _Lfovy L 62_G
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Relations with thermal response functions C,,, Cy:
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Magnetic response functions
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Relations with thermal response functions Cy, C)y:
G _xr o _ Tay . Tohxs
Cv  Xxs’ X — XS xr(xr — Xxs)
T 2
= CH — CM = n
XT



