Gases with internal degrees of freedom (..

Assumptions: molecules are noninteracting; translational, rotational, and
vibrational degrees of freedom are independent:
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Translational motion (classical):
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Rotational motion (classical):

(a) NH3 (multi-atomic molecule):
Euler angles 0, ¢, 1; canonical conjugate momenta pg, pg, Py-
Uniaxially symmetric inertia tensor with principal moments I; = Iy, I3.
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(b) HCI (two-atomic heteronuclear molecule):
The rotation about the molecular axis is suppressed due to quantum effect.
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(¢) Ny (two-atomic homonuclear molecule):
Minor modification: range of one variable (0 < ¢ < ).
This change does affect the entropy but not the heat capacity = [tex88].



Rotational motion (quantum):

Consider a two-atomic molecule.

1
Angular momentum operator: L. Hamiltonian operator: Hg = ZLQ'
I(1+1)h?
Energy levels: FEy, = %; [=0,1,2,...; m=—-l,—-l+1,...,1
Degeneracy: (21 + 1)-fold.
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Characteristic temperature: kgOpr = T

Low-temperature analysis (7' < ©r) = [tex89].

High-temperature analysis (7> ©Or) = [tex90].

Vibrational motion (quantum):
d P 1 2 2
Hamiltonian: Hy = lzl (2—ml + 5w ql> .

Here f is the number of vibrational normal modes, each expressed by a pair
(g1, 1) of canonical normal mode coordinates.
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Characteristic temperature: kg©Oy = hw.

Vibrational modes require much higher temperatures to be activated:
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Fine structure:

If the atomic ground state has zero orbital angular momentum (I = 0) and
nonzero spin angular momentum (s # 0), the entropy acquires an additive
constant, AS = NkpgIn(2s + 1). The heat capacity remains unaffected.

In the presence of an external magnetic field, this system is a paramagnetic
gas. The thermodynamics of dilute paramagnetic gases are the theme of
[tex22] and [tex133].

If the atomic ground state has [ # 0 and s # 0, then the L-S coupling
produces a fine-structure splitting of the ground-state degeneracy:
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where j is the quantum number of the total angular momentum. If the lowest
level has j = jo, then the entropy of the atomic gas increases by

(25 + 1)(20 + 1)

AS = Nkgl
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over a temperature range 0 < kT < AEpg, where AELs measures the total
L-S level splitting.

The contribution to the heat capacity, C"(/FS), is a function of T that rises
from zero exponentially, exhibits a smooth maximum at kgT ~ AFEpg, and
then dips back down to zero algebraically.!

The functional dependence of C"(,FS) on T is very similar to that of the heat
capacity of a Langevin paramagnet as analyzed in [tex85] and [tex86].

'In practical reality, atomic gases with [ # 0, s # 0 tend to form molecules or condense at
temperatures far above kgT ~ AFEg.



